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Chapter 1

General Introduction and Motivation

1.1 The Physical Approach in Life Sciences

Life means motion, and motion is the essential feature of life. What is the innate motive force of
living matter? It looks like the nature of our world is such that questions like this one, in spite of
being formidably simple to pose, are in fact insuperable to answer. The challenge of understanding
living matter stems from its complexity, which is primarily due to the heterogeneity of biological
systems and the huge regulatory network of interactions between their components. To meet this
challenge implies dealing with information, in fact a huge quantity of information, and it is the
hope that the processing of this gargantuan amount of data becomes more systematic by the use of
the methods of the physical sciences.

The central dogma of biology,evolution, assumes that living organisms have evolved from
simpler to more complex forms.. This perfectly fits thereductionistview of a physicist, who
usually strips off all unnecessary details when he/she is interested in a particular phenomenology.
Indeed, along the evolutionary path, we expect that a new and more complex characteristic can
be acquiredonly by exploiting the already available and simpler possibilities. This point of view
lends support for the physicist’scredo, thatsimplegoverning principles may explain the complex
behavior of living systems. In other words, the study of life becomes a form of reverse engineering,
wherein we first try to identify the individual components of living systems, and subsequently we
try to understand their emergent properties from the relationship between these components.

1.2 The Cytoskeleton

Let us illustrate the previous statements with the example of thecytoskeleton, which is a key
component of a living eukaryotic cell.

The cytoskeleton is a network of protein filaments that is deeply involved in the functioning of
the cell. For example, it is due to the cytoskeleton that cells can adopt a certain shape. Further,
the locomotion of the cell is made possible by the continuous reorganization of the cytoskeletal
network [1]. The cytoskeletal filaments also serve as tracks for motor proteins that transport cargos
with cellular material across the cell.

There are three types of protein filaments in the cytoskeleton,i.e. actin filaments, microtubules,
andintermediate filaments. What is particular to actin filaments and microtubules is that their cor-
responding protein subunits,i.e. actin and tubulin, are highly conserved along the evolutionary
path of eukaryotes. This high degree of conservation suggests that these protein subunits already
posses all the properties that fit the protein filaments to basic cellular activities that remain un-
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changed along the evolutionary time line. This makes them particularly interesting objects for a
bottom-up study, since this fact recommends them as being the simplest among other components
of the cell.

Because filaments are one of the simplest components inside the living cell, it may come as
a surprise to learn that microtubules are the building blocks of the mitotic spindle formed during
the cell division. Indeed, the division machinery is expected to be extremely complex, since it
is responsible for the segregation of the chromosomes, and very few mistakes are tolerated when
the genetic material is distributed to the daughter cells. A repeated malfunction in the division
mechanism implies the inheritance of potentially serious genetic defects. For life to persists, the
offsprings must have the best starting position.

1.3 Microtubule Dynamics

How it is possible that microtubules can form a reliable scaffold for the mitotic spindle? It is not yet
fully understood today, how the mitotic mechanism precisely works. However, significant progress
in this direction was made in 1984 with the discovery of thedynamic instabilityof microtubules
[2]. Dynamic instability is the alternation in time of microtubules between, the two dynamically
different states of growing and shrinking. More precisely, after a period ofgrowth due to poly-
merization, which typically lasts for minutes, microtubules suddenly switch to a phase of rapid
shrinking, due to the loss of subunits, and it could be a matter of seconds for them to eventually
disappear. This switch from the growing to the shrinking state is called acatastrophe. Sometimes,
rescueevents are possible,i.e. microtubules switch from disassembling to the growing state again.
There is a number of factors that regulate the dynamics of microtubules. For instance, microtubule
associated proteins (MAPs) bind to microtubules and regulate their dynamics. During metaphase,
when all chromosomes are aligned at the median plane of the spindle, a chemical signal triggers
catastrophes in all microtubules simultaneously. While shrinking, microtubules drive the attached
chromosome halves towards each of the two spindle poles, where the nuclei of the two daughter
cells will be formed.

Dynamic instability is a property of microtubules unique among all polymers. It is also a crucial
property, since microtubules need to self-organize in different structures during the cell cycle. For
example, asters and the mitotic spindle are built up with the reuse of the same material,i.e. tubulin.

Since its discovery in 1984, further biochemical studies have shown [3] that dynamic instability
is a profound non-equilibrium process that is powered by the hydrolysis of GTP, which binds to
the microtubules. Although dynamic instability is a dominant effect in many microtubule arrays,
its precise mechanism and biological function are still open questions.

1.4 Microtubule Structure

Let us have a closer look at the structure of a microtubule for a better understanding of its proper-
ties.

The subunits of a microtubule come in the form of heterodimers composed of two different
strains of tubulin,i.e. α andβ tubulin, with slightly different biochemical properties. The subunits
are ofδ = 8nm in size, and they chain head-to-tail in the form of linear aggregates, which we
call protofilaments. These protofilaments connect laterally to form a cylindrical sheet, resulting in
a tubular hollow aggregate with a diameter of25nm, i.e. the microtubule (see Fig. 1.1).
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α
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δ

25 nm
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Figure 1.1: Microtubule structure. Dimers, that consists ofα − β tubulin are head-to-tail assembled in the form of
protofilaments. These protofilaments are laterally bonded on a cylindrical sheet, giving the tubular shape of micro-
tubules. There are two types of lattice: the A Lattice (a) and the B Lattice (b). Experimental evidence strongly favors
the case of B Lattice, which presents also a seam. The value of the offset between adjacent filaments is such that the
seam does not exist in the case of10 or 16 profilaments.
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Direct observation from cryo-electron micrographs suggests that under normal conditions the
microtubule is made ofN = 13 protofilaments. Between any adjacent protofilaments there is a lon-
gitudinal positional offset, such that the overall offset between the first and the last protofilament,
counted around the circle, isS = 1.5 δ.

The protofilaments can be arranged into two different types of lattice, the A Lattice and the B
Lattice, due to different possible orientations of the heterodimer inside the protofilaments (see Fig
1.1 (a) and (b)) [4]. A significant difference between the two cases is the existence of a seam in the
case of the B Lattice, which is the consequence of a lateral misfit between theα andβ tubulin, at the
lateral contact between the first and the last filament. Cryo-electron micrographs bring compelling
evidence for the existence of the seam, which then favors the model of the B Lattice. We mention
that in the case of the B Lattice, the seam does not exist if the there areN = 10 or N = 16
filaments in the assembly.

Another important consequence of the B lattice is the existence of an inherent polarity in mi-
crotubule structure. In the case of the A Lattice, the orientation of dimers alternate from one
protofilament to the next, and although the individual protofilaments are polar, the assembly as a
whole is not. However, a polar assembly guarantees the possibility of the directional transport of
cargos with the help of motor proteins. In other words, the microtubule polarity is the symmetry
breaking factor that defines the direction of motion for motor proteins.

The asymmetry of the two microtubule ends also shows up in different biochemical properties.
For instance, polymerization is possible at both ends, but one end is growing much faster than the
other. In the literature, theplus endis referred to as the end that exposes theβ tubulin monomers
outward and the other end is called theminusend. The plus end is the faster growing of the two
ends.

Due to the addition and removal of subunits, the microtubule ends are not expected to be regular.
Cryo-electron microscope images show that depending on the microtubule dynamic state [5], the
microtubule plus ends show three different topological forms. More exactly, during the state of
growth, the plus end looks like an open sheet, with the microtubule seam opened up for over a
length of100nm or more [5] (see also Fig. 1.5.1 and Fig. 1.3). In the shrinking state, the images
suggest that the lateral bonds between protofilaments are breaking from the microtubule end and
the protofilaments are peeling off. There is possibly also anintermediatestate between growing
and shrinking, which corresponds to blunt ends of microtubules [5].

1.5 Thesis Outline

1.5.1 Microtubule Self-Assembly

In the first part of this thesis, we investigate some physical aspects of growing microtubules. An
important aspect of microtubules is their ability to generate pushing forces during the process
of polymerization. Force generation makes a microtubule act like a particular type of molecular
motor. For example, this process helps in nuclear positioning in fission yeast [6, 7], or in the
positioning of the spindle poles during mitosis.In-vitro experiments also demonstrate the aster
positioning in micro-fabricated chambers [8].

The key concept that we use in order to understand the force generation mechanism is the
Brownian ratchet[9]. This concept explains how it is possible to extract work from an isothermal
reservoir provided that the system is out of equilibrium. We will discus this concept in detail in
Chapter 2 and illustrate it on the case of rigid one-filament polymers. The second major aim of this
chapter is to generalize and adapt this concept to semi-flexible and more composite polymers like
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Figure 1.2: Cryo-electron microscope images show polymorphic microtubule ends, blunt ends (a), and open sheets
(b), (c), and (d) (from Ref. [10]).

microtubules.
In Chapter 3 we will develop an explicit model for microtubule growth and compare this directly

to experimental data. Direct quantitative comparisons with experiments shows the possibility to
extract hints about both microtubule internal structure and the force generation mechanism itself.
Unlike other models used in the literature, it is possible to address relevant physical issues of the
growth mechanism on a minimal modeling basis. For example, we will see in Chapter 4 that
without any reference to GTP hydrolysis, the model at hand can qualitatively reproduce the open
sheet structure that exist at the plus ends of growing microtubules.

Figure 1.3: A cartoon after the cryo-electron microscope images. It is suggested that the microtubule plus end is
structured like an open sheet during the growth (a), and the protofilaments are peeling off during disassembling (d). It
is proposed the existence of an intermediate state that corresponds to blunt ends (c) (after Ref. [5]).

1.5.2 Microtubule Self-Organization

Self-organization of microtubules is another important feature of living cells that involves dynam-
ics on a very different time and length scale than that of the growth process. It might be surprising
that such a regime exists since, as we have previously seen, the microtubule internal structure is not
particularly sophisticated. However, a variety of MAPs are responsible for creating such a multi
scale dynamics.
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(a) (b)

(c) (d)

Figure 1.4: The cortical self-organization of microtubules in higher plant cells. A plant cell is shaped as a cylinder
with a length of60 − 100µm and a diameter of30µm. These images show GFP labeled microtubules in tobacco
BY-2 cells. During interphase, the microtubules show a transversal regular array (a). As the cell progresses toward
division, the array becomes narrower and keeps its transversal orientation (b), (c), and (d), forming the preprophase
band (PPB). After the break down of PPB, the tubulin is reused to form the mitotic spindle. In the late stage of the
PPB, part of the labeled tubulin already marks the nucleus (d). (Courtesy of Jan Vos, EMBL Heidelberg, Germany)

Cells of different types develop different cytoskeletal structure, depending on their specific
functionality. Radically different microtubule structures are observed in higher plant cells, with no
direct analog in animal cells. For example, it is particular for higher plant cells to develop a regular
transverse array of microtubules during interphase. During preprophase,i.e. just at the onset of
the division, the wide interphase array narrows down to a3− 4µm wide band around the nucleus.
The position of this so-called the preprophase band (PPB) correlates with the position of the future
separation wall between the daughter cells. However, the precise biological function of these two
particular microtubule arrangements is still poorly understood.

The aim of the second part of these thesis is to investigate the possible mechanisms that drive
these particular arrangements in higher plant cells. In Chapter 5 we present a detailed description
of the system. We first try to ignore the presence of MAPs and derive the self-organization of
microtubules as driven by passive ingredients only. More precisely we will explore the interplay
between the elastic properties of extended polymers and their confinement in a closed system.

In Chapter 6, we explore the role of the active factors,i.e. motor proteins that actively cross
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link microtubules and drives them into large scale pattern formation. The method of choice is
mean field theoryand we adopt atop-downapproach in the sense that we do not make any specific
assumptions concerning the motor-filament interaction at the microscopic level. The macroscopic
equations are derived on the basis of invariance properties that have to be obeyed by the physical
system that we study. In this way, based on symmetry analysis alone, our aim is to derive a minimal
set of conditions that could explain patterns like the PPB.

In Chapter 7 we develop the complementarybottom-upapproach, by defining a specific micro-
scopic model from which we derive the macroscopic evolution equations of the system. The aim
of this chapter is rather broad. First of all we can analyze how the results in this case correlate with
the generic results that we derive in Chapter 6. Second, the methods that we develop allow the
application of our theory to both 2D and 3D systems, which means that we can in principle apply
it to many other systems as well. Third, due to the generality of the issues that we can address,
we can easily fit this work into the much broader context of pattern formation in non-equilibrium
systems.
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Part I

Microtubule Self-Assembly





Chapter 2

Brownian Ratchet Model for Stiff and
Semi-Flexible Polymers

2.1 Introduction

Along the evolutionary path, living cells developed different chemical energy transducers needed to
supply the motility processes with the required mechanical force. Molecular motors like kinesins,
dyneins and myosins use chemical energy stored in fuel molecules of ATP to produce mechanical
force needed, for example, in vesicle transport across the cell or in muscle contractions.

A different type of motors are the polymerization ratchets. The chemical binding energy avail-
able from the polymerization of cytoskeletal polymers is transformed into mechanical work exerted
on a given target. There is already strong evidence that actin polymerization is harnessed to pro-
duce force in cells [11]. An example is actin-dependent motility such as cell crawling andListeria
propulsion [12]. Other cellular processes like filopodial and lamellipodial protrusions are good
examples as well.In vitro evidence of force generation from chemical energy comes from experi-
ments on actin polymerization within liposomes [13]. It was observed that the polymerizing fibers
extruded long spikes, just like filopodia, from the otherwise spherical liposomes. Similar observa-
tions were made using tubulin [14, 15]. These experiments prove that polymerization can produce
a pushing force strong enough to deform a lipid bilayer.

2.2 Thermodynamics

General thermodynamic arguments can be used to support the idea of converting polymerization
energy into work. It can be shown that the free energy release at a polymerization event can be
adequate to generate mechanical force ([16], [17]).

We present a simple kinetic picture of a rigid polymer that is undergoing polymerization against
a given load (see Fig. 2.1). The polymerization and de-polymerization rates,kon andkoff can be
related to the chemical energy∆G, which is released for each inserted subunit. The probability
rate that corresponds to polymerization is determined by the energy barrier∆G∗ and is given by
Kramers formula ([18, 16]):

kon = const exp

(
−∆G∗

kB T

)
(2.1)

A similar relation holds true for the de-polymerization process. Theoff-rate is given now by a
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Figure 2.1: A kinetic picture for the polymerizing ratchet

different energy barrier,i.e. ∆G+ ∆G∗:

koff = const exp

(
−∆G+ ∆G∗

kB T

)
(2.2)

The proportionality constantconst is the same in the last two equations because if there is no
chemical energy∆G then the polymer is not growing on average and therefore theon- andoff-
rates must be equal.

Dividing the last two equations, the energy barrier∆G∗ is eliminated and we have the following
generalrelations between the kinetic coefficients,kon andkoff , and the released free energy∆G:

kon
koff

= exp

(
∆G

kB T

)
(2.3)

For afreelygrowing polymer,i.e. in the absence of any load, the chemical energy has a specific
value ∆G = ∆G0, which is fully released to the bath. For this particular case, theon- and
off-rates,k0

on andk0
off , are satisfying the same kinetic equation as Eq. (2.3):

k0
on

k0
off

= exp

(
∆G0

kB T

)
(2.4)

Let us consider now the case of a load. The load is imagined as an object which is pushed
against the polymer by a forceF . If a subunit is inserted, then the load is displaced against the
applied force by a distance that is equal to the subunit sizeδ. This means that the amount of work
W = F δ is done. The energy needed for this work is supplied by the chemical energy∆G0,
which is released after a polymerization event. In the presence of the load only a part of this
energy,∆G = ∆G0 −W , is released to the bath of free subunits. The rest of it isconvertedinto
work by a specific mechanism. An example of such a mechanism is discussed in the next section,
when we will discuss the concept of thebrownian ratchet.

In the presence of the load, the kinetic rates are modified from their values in the free case.
From Eq. (2.3) we see that the ratio of their values is given only by the chemical energy∆G that
is released to the bath. Since∆G = ∆G0 −W , and with the use of Eq. (2.4), from Eq. (2.3), we
have:

kon
koff

=
k0
on

k0
off

exp

(
− W

kB T

)
(2.5)
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This is the most general relation, derived on the thermodynamical grounds, which relates the
kinetic rates in the presence and in the absence of the load. In plain words, the last relation shows
that the ratio of theon- andoff- rates decreases from the free case in the presence of the load by a
Boltzmann factor that depends on the work done against the load.

2.3 The Force Velocity Relation And The Stall Force

Of course, if we know theon- andoff- rates,kon andkoff , we can evaluate how fast the polymer
can grow on average. The velocity of growth is simply given by the product between the step size
δ and the difference of theon-andoff- rates:

v = δ (kon − koff ) (2.6)

We expect a dependency of the velocity of growth on the loadF , more precisely, a decrease
of the velocity of growth when the applied forceF increases. Our key relation for deriving this
dependency is Eq. (2.5). However, this relation does not fix separately the rateskon, koff to
the corresponding values in the absence of the loadk0

on andk0
off . A convenient choice for such

relations is:  kon = k0
on exp

(
−q W

kBT

)
koff = k0

off exp
(
−(q − 1) W

kBT

) (2.7)

These relations satisfy the most general condition expressed in Eq. (2.5), and Eq. (2.7) represent
one of the most simple choices that we can make. We have just introduced a new parameter,q,
which takes a real value. If the value of this parameter lies within the interval0 < q < 1, we see
from Eq. (2.7) that, in the presence of the load, the polymerization rate is depressed, while the de-
polymerization is enhanced. However, the choice that we made in Eq. (2.7) provides no physical
interpretation of the parameterq, and therefore we cannot provide a strong argument of why the
values of this parameter should be confined to the interval0 < q < 1. It may sound surprising that
the polymerization could be stimulated in the presence of load, which could happen in the case of
negative valuesq < 0. One might speculate that at the physical contact between the polymer end
and the load some sticking proteins may regulate the dynamics of the polymer growth. For this
reason we leave open the question of the restriction of the values ofq to a certain interval.

With the help of Eq. (2.5), the velocity of growth can be rewritten explicitly from Eq. (2.6) (if
we write alsoW = F δ):

v(F ) = δ

(
k0
on exp

(
−q F δ

kBT

)
− k0

off exp

(
−(q − 1)

F δ

kBT

))
(2.8)

In Fig. 2.2 we can see different profiles of the force-velocity relation for different values of the
parameterq. Particularly, when the de-polymerization rate is not affected by the presence of the
load,i.e. q = 1, the velocity becomes:

v(F ) = δ

(
k0
on exp

(
− F δ

kBT

)
− k0

off

)
(2.9)

The velocity of growth decreases with the applied force, and the growth stops for a finite value
of the force. We call the corresponding value of that force thestall force,Fstall. Equating to zero
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Figure 2.2: Theforce-velocityrelation for a stiff polymer

the velocity from Eq. (2.8) we derive the following expression for the stall force:

Fstall =
kBT

δ
ln

(
k0
on

k0
off

)
(2.10)

The expression Eq. (2.10) for the stall force is independent on the parameterq. We stress that
it is even independent on the choice Eq. (2.7). The reason is evident from Eq. (2.5): when the
growth is stalled the effective rateskon andkoff are equal, and if we set to unity thelhsof Eq. (2.5)
we recover Eq. (2.10).

2.4 A Brownian Ratchet

However, thermodynamic arguments tell us little about the underlying mechanism of how work is
produced from chemical energy. In this section we will present such a mechanism, which is called
Brownian ratchet. In our brief introduction to this concept we will learn that thermal fluctuations
play the key role in transducing the chemical energy intodirected motion, and hence why the
epithetBrownian.

In 1993 Peskinet al ([9]) proposed a model of how a polymerization process can generate
force. They imagined a one dimensional object that was diffusing in the presence of an external
force (see Fig. 2.3). The external force pushes the object against a stiff polymer, which is growing
by polymerization. We can see from Fig. 2.3 that as the polymer is growing, the average position
of the diffusive object was displaced and hence work was done on the diffusive object as it is being
pushed to the right.

In this system a monomer can be inserted by polymerization if it is sterically allowed in the
gap between the polymer tip and the brownian object. In the absence of the force the density
distributionc(x) of the object is wide and the object is not restricting the growth of the polymer. In
this case subunits are inserted with a ratek0

on. In the presence of the forceF the probabilityPx>δ
of having the gap wider than the subunit sizeδ is limiting the polymerization rate to:

kon = k0
on Px>δ (2.11)
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Figure 2.3: A Brownian ratchet: a diffusive object is moving in the presence of an external field against a growing stiff
polymer

This model thus presents obvious corrections to be made for theeffectivepolymerization rate
in the presence of a load. However, it predicts no change for the de-polymerization rate,i.e.
koff = k0

off . A load can have an effect on the de-polymerization as well. For example the induced
stress in the polymer body by the mechanical contact between the polymer end and the moving
object can induce slight deformations in the monomers. In the case of proteins, like tubulin, a
3D conformational change does have an effect on the biochemical properties, and hence on the
de-polymerization rate of monomers. However, understanding how this change comes into action
is beyond the aim of our presentation of the Brownian ratchet model and we will not delve into
unnecessary details.

In the remainder of this section we will evaluate the average velocity of growth of the polymer
and from this the stall forceFstall. Since the velocityv = δ (kon − koff ) is given by:

v = δ (k0
on Px>δ − k0

off ) (2.12)

it follows that we need to evaluate the probabilityPx>δ. In a statistical ensemble, if we know the
number of objects at a distance larger than a subunit size from the polymer tip,I1 =

∫∞
x=δ

dx c(x),
and the total number of the objectsN =

∫∞
x=0

dx c(x), then the probability of having the gap with
the required size,Px>δ = I1/N , is given by:

Px>δ =

∫∞
x=δ

dx c(x)∫∞
x=0

dx c(x)
(2.13)

Then, the velocity of growth Eq. (2.12) can be written in a more explicit form:

v = δ

(
k0
on

∫∞
x=δ

dx c(x)∫∞
x=0

dx c(x)
− k0

off

)
(2.14)

Following Peskinet al [9] (see also Appendix), we can derive the equation for the density
distribution of the diffusing object:

∂ c

∂t
= D

∂2 c

∂ x2
+
F D

kB T

∂ c

∂ x
+k0

on

(
c(x+δ, t)−Θ(x−δ) c(x, t)

)
+k0

off

(
Θ(x−δ) c(x−δ, t)−c(x, t)

)
(2.15)

whereΘ(x− δ) is the Heaviside step function:

Θ(x) =

{
1 if x > 0
0 if x < 0

(2.16)

We have an interesting limiting case when we suppose that the diffusion time scale is much
smaller than the corresponding scale associated with the polymerization and de-polymerization
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processes,i.e. {
k0
on � D/δ2

k0
off � D/δ2 (2.17)

We introduce now the parameter

ε =
k0
on δ

2

D
(2.18)

which is arbitrarily small in the regime of fast diffusion limit. In this regime the velocity of growth
can be expressed as an expansion inε, which in the case of small de-polymerizationk0

off � k0
on

takes the form (see Appendix):

v(F ) = δ k0
on

e− F δ
kB T − 2 ε

e
−2 F δ

kB T

(
e

F δ
kB T − F δ

kB T
− 1
)

(
F δ
kB T

)2

+O(ε2) (2.19)

Particularly, in the case of fast diffusion limit,i.e. ε → 0, we get from the last equation that
v(F ) = δ k0

on exp(−F δ/kB T ). We can understand this result directly from the ratchet equation
Eq. (2.15). Indeed, in the fast diffusion limit we can neglect thereactionterms from the Eq. (2.15)
(i.e. the terms proportional tok0

on andk0
off ). We are left with a diffusion equation of a particle in

an external field, which yields the stationary solutionc(x) = c0 exp(−F x/kB T ). This is nothing
else than the Boltzmann distribution known from equilibrium statistical mechanics. The reason
why we get Boltzmann distribution in the present limiting case is apparent: the polymerization
and de-polymerization are slow processes and the relaxation time scale of the diffusive particle is
small.

Knowing that the density distribution scales asc(x) ∝ exp(−F x/kB T ) in the fast diffusion
limit of Eq. (2.17), from Eq. (2.13) we have

Px>δ = exp

(
− F δ

kB T

)
(2.20)

and the velocity of growth Eq. (2.12) becomes [9]:

v(F ) = δ

(
k0
on exp

(
− F δ

kB T

)
− k0

off

)
(2.21)

Another observation is to note the identity of Eq. (2.21) to Eq. (2.9). This is not a simple
coincidence. The later equation was derived in the previous section on general grounds by using
arguments from thermodynamics and equilibrium statistics. This corresponds precisely to the con-
ditions of fast diffusion limit from which Eq. (2.21) was derived, since the system has enough time
to relax between two events of polymerization and/or de-polymerization. Thestall forceFstall can
be derived from Eq. (2.21) by solving the equationv(F ) = 0, and of course, we get the same result
as Eq. (2.10),Fstall = kB T/δ ln(k0

on/k
0
off ).

It is interesting to notice that this result for the stall force is not dependent on the equilibrium
statistics assumptions that we made in deriving it in the previous section,i.e. the result is the same
for an arbitrary value for the diffusion constant. We can understand this as follows. Eq. (2.15)
is in fact areaction-diffusionequation of an object which is diffusing in an external field. The
reaction termsare due to the polymerization and de-polymerization processes. Indeed the origin
of the coordinate system is set to the polymer end which is shifted to the right or to the left when
a subunit is inserted or extracted. As a result the diffusive particle is seen as jumping from one
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position to another with a step size equal to the subunit size and with a rate given by theon- and
off- rates,k0

on andk0
off respectively (see Appendix for a detailed mathematical description of the

model). In the case of stalled growth we expect that thereactionterms are identically zero, since
the particle is not displaced onaverage:{

k0
on c(x+ δ)− k0

off c(x) = 0
Θ(x− δ)

(
k0
on c(x)− k0

off c(x− δ)
)

= 0
(2.22)

If the jumping events cancel out, we are left from Eq. (2.15) with a pure diffusion equation, which
gives the stationary solution:

c(x) = c0 exp

(
−Fstall x

kBT

)
(2.23)

The value of the stall force is computed from this solution by imposing the conditions from Eq.
(2.22), which gives exactly the same expression as thethermodynamicresult Eq. (2.10). One can
check that the velocity of growth, given by Eq. (2.14), is zero when we take the ansatz Eq. (2.23)
from the density distributionc(x) and the value of the stall force as it is given by the thermodynamic
formula Eq. (2.10). In short, the stall force for a Brownian ratchet isgenerallygiven by

FB.R.
stall =

kB T

δ
ln

(
k0
on

k0
off

)
(2.24)

and isnot restricted by any thermodynamic assumption.

2.5 A Brownian Ratchet Model For Semi-Flexible Polymers

We have learned from the previous section that thermal fluctuations of the mechanical barrier play
the key role in converting the chemical energy into work. However, one of the major features
of the model is the stiffness of the polymer, which is obviously unrealistic. For example, the
in-vitro experiments [19] show thatbreathingmodes are induced in microtubules, due to thermal
fluctuations, when microtubules were pushing against the chamber wall.

We present a cartoon of this situation under discussion in Fig. 2.4, where we draw a micro-
tubule that was growing from its fixed seed toward afixedwall, which is exactly the case of the
experiments described in [19, 20]. Video microscopy images showed that the microtubule end
was eventually caught by wall aspersions, which prevented the microtubule end to slip along the
wall [19]. Elastic stress was built up in the microtubule body, since the microtubules were seen
to buckle as they were pushing against the wall. As the microtubules touched the wall they con-
tinued to grow in length but at a slower rate. The thermal fluctuations were visible in the video
images, which means that gaps can be opened between the end of the microtubule and the wall.
This explains why polymerization can be still possible under the condition that mechanical stress
was developing in microtubules.

The present situation suggests that the mechanism of force generation is similar in nature with
the polymerization ratchet that we have described in the preceding section. The role of the old
thermally fluctuating object is played now by the microtubule end itself, and the role of the applied
force is played by the elastical stress in the microtubules.

Let us closely adapt the stiff polymerization ratchet to semi-flexible polymers. As averyfirst
step, for the sake of simplicity, we imagine asingle filamentsemi-flexible polymer. In a similar
manner like Mogilner and Oster [21, 22], we can map thebuckledsemi-flexible filament from Fig.
2.4 (a) to aone dimensionalelastic spring, Fig. 2.4 (b), which is oscillating against afixedwall
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Figure 2.4: A semi-flexible filament as a polymerizing brownian ratchet. (a): Elastic stress builds up in the filament
body as a result of polymerization, and the filament buckles. Thermal fluctuations of the filament allow gap openings
between filament tip and the wall, which makes polymerization possible. (b): Thermal fluctuations are much faster
than the subunit addition-removal events. On the time scale of thermal fluctuations, the semi-flexible filament is
viewed as a 1D spring, which fluctuates against the fixed wall. The elastic stress in the spring narrows the probability
Px>δ for gap opening, which limits the polymerization ratekon = k0

on Px>δ. Between two polymerization events,
the thermal average of the elastic force is actually the equivalent of the load from the Brownian ratchet model with a
diffusive barrier (Peskin et, al. [9], see also Fig. 2.3).

due to thermal fluctuations. The bending elastic properties of the filament can be mapped to the
elastic constant of the springk only between two events of subunit addition or removal. We make
the observation that, during growth, the spring constant is changing as the length of the polymer
increases.

Another major assumption that is relevant for the rest of the present thesis is to suppose that
the time scale of the thermal fluctuations is much smaller than the corresponding time scale related
to the polymerization and de-polymerization processes [23, 21]. This implies that the density
distribution of the spring end from Fig. 2.4 (b) is given from equilibrium statistical mechanics as

P (x) = c0 exp

(
−k (|x0|+ x)2

2 kB T

)
(2.25)

Indeed, the above is the Boltzmann distribution of a particle under the action of a an elastic spring.
The origin of the coordinate axis is at the wall position and thex axis is oriented to the left, towards
the spring (see Fig. 2.4 (b)). The relaxation position of the springx0 is negative in value since it is
on the right side of the wall, because we suppose that the wall is compressing the spring. Therefore,
the elastic energy of the situation presented in Fig. 2.4 (b) isE = k (|x0|+ x)2/2 and hence the
distribution Eq. (2.25).

In order for a polymerization event to happen, a gap wider that a subunit lengthδ needs to be
opened in order to sterically fit a monomer between the filament end and the wall. The job of gap
opening is done by the thermal fluctuations and the probability of having the gap wide enough is
calculated from Eq. (2.25) asPx>δ =

∫∞
δ
dx c(x)/

∫∞
0
dx c(x). We write this in the explicit form:

Px>δ =

∫∞
δ
dx exp

(
−k (|x0|+x)2

2 kB T

)
∫∞

0
dx exp

(
−k (|x0|+x)2

2 kB T

) (2.26)
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For convenience we choosey as a dimensionless integration variable, and we get:

Px>δ =

∫∞√
k/2kBT (δ+|x0|)

dy exp (−y2)∫∞√
k/2kBT |x0|

dx exp (−y2)
(2.27)

In the case of persistent polymers, like microtubules, we can show (see Appendix B)√
k/2kBT |x0| � 1 (2.28)

Then, with the help of the expansion [24]

2√
π

∫ ∞
α

du e−u
2

=
e−α

2

√
π

(
1

α
− 1

2α3
+ · · ·+ (−1)n

(2n− 1)!!

2nα2n

)
(2.29)

we approximate Eq. (2.27), if we keep only the first dominant term:

Px>δ =
|x0|

(δ + |x0|)
exp

(
− k

2kBT
(δ2 + 2δ|x0|)

)
(2.30)

In video microscopy images [19] the velocity of microtubules was observed to be about1µmmin−1,
i.e. the relevant changes in microtubule lengths were in the order of micrometers, given also the
resolution of the processed images. Because the size of a subunitδ = 8nm is in the order of
magnitude of nanometers, we haveδ � |x0| for most of the practical situations, and with this we
can further approximate Eq. (2.30) to:

Px>δ = exp

(
−k|x0| δ
kB T

)
(2.31)

The elastic force in the spring is preciselyFel = k |x0|, which is interpreted as the load of our
ratchet. Therefore, if we put the last formula in the form:

Px>δ = exp

(
−Fel δ
kBT

)
(2.32)

we see that we arrived at the same startlingly simple formula for the gap probabilityPx>δ, which
we have discussed about in the preceding section in the case of thestiff polymerizing ratchet in the
fast diffusion limit.

Finally, the polymerization rate of asemi-flexiblefilament is given by

kon = k0
on exp

(
−Fel δ
kB T

)
(2.33)

Since we did not make any assumption regarding the modification of theoff-rate, we derive a
perfectly identical formula for the velocity of growth, Eq. (2.21).

Aside

We have to notice some geometrical artifacts due to the mapping between the real filament and the spring in Fig. 2.4. If we zoom

in the details of the filament end at the wall contact (see Fig. 2.5), we have to realize that, because of the filament tilt at the wall,

theeffectivesubunit sizeδ∗ should be given by the projection of the subunit sizeδ on the perpendicular direction on the wall,i.e.

δ∗ = δ cos θ. Because we map onto the one dimensional spring as in Fig. 2.4, thenδ∗ is the correct geometrical quantity that

should enter the formula for the effectiveon-rateEq. (2.33),kon ∝ exp(−Fel δ∗/kB T ). However, the forcereactionfrom the
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Figure 2.5: The detail at the wall contact of the filament tip suggests that the effective size of the inserted subunit
should be its longitudinal projectionδ∗ = δ cos θ. An alternative interpretation is to regard the applied force not as the
full force F but only its tangential componentFp, since the right physical quantity that should enter the model is the
work F δ∗ = F δ cos θ = Fp δ.

wall F is supposed to be perpendicular to the wall, and the component which is tangent to the filament isF|| = F cos θ. Then

Fδ∗ = Fδ cos θ = F||δ. In other words, we can keep the effective size of the monomer as being equal to its full size,δ = δ∗,

but we have to interpret the forceFel from Eq. (2.33) as not being thereactio force from the wall, which acts on the filament, but

its projection to the tangent on the filament at its contact point on the wall,kon ∝ exp(−F|| δ/kB T ). It is worth to mention that,

in the case of force measurements in Ref. [19], it was precisely the parallel component of the forceF|| which was measured and

interpreted as the load, which theforce-velocityrelation was determined from. Therefore, for the sake of simplicity, we make the

convention that the Eq. (2.33) corresponds to the real physical situation.

2.6 A Simplified Geometrical Picture

In the view of the coming chapter, it is worthwhile to conclude our discussion with a simplified
but relevant picture of a force producing mechanism from a semi-flexible polymerizing filament.
Throughout this chapter we have seen as an emerging characteristic that, in the presence of a
load, the on-rate of a polymerizing polymer scales with a Boltzmann factor, which is given by the
work done against the load for each inserted monomer,i.e. kon ∝ exp(−Fδ/kBT ). This scaling
was found when we discussed the generic thermodynamic aspects of a polymerizing motor, but
it was also derived from specific models, like the Brownian Ratchet with a diffusive barrier, or
from the semi-flexible filament model. The reason behind this scaling is expected to hold true for
microtubules, because of the fast thermal fluctuations in semi-flexible polymers like microtubules.

Actually, the two specific Brownian Ratchet models,i.e. the diffusive barrier and the semi-
flexible filament model, are mathematically equivalent in the limit of fast thermal fluctuations for
the simple reason that the polymerization rate is identical

kon = k0
on exp

(
− F δ

kB T

)
(2.34)

Therefore, both models can be further mapped to an even more simplifiedgeometricalpolymer-
ization ratchet that we are going to present in the following. Instead of a semi-flexible polymer,
whose end is moving from a fixed wall due to thermal fluctuations (see Fig. 2.4), we consider an
infinitely stifffilament which is polymerizing against anon-fixed wallthat is propped up by a force
F (see Fig. 2.6). The polymerization rate is given by Eq. (2.34). In our geometrical model there
are no explanations of how gaps are opened between the filament tip and the wall and therefore
how monomers can be inserted with rate from Eq. (2.34). However, it is precisely this rate that
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FORCE

FORCE

kon

old position of the load

new position of the load

δ

Figure 2.6: A geometrical picture of the polymerizing ratchet. A stiff polymer is growing against anon-fixedwall,
which is pushed by a forceF against the filament. The polymerization rate is normalized by a Boltzmann factor (see
Eq. (2.34)). Theoff-ratek∗off is not affected by the load in this model.

includes the physical details. In the previous sections, we showed that thermal fluctuations can
help gaps to open, and how these fluctuations are integrated out in the form of the polymerization
rate as it is expressed in Eq. (2.34).

The motivation for thisgeometricalpicture should become clear in the next section. We will
see that ourone-filament geometrical ratchetcan be generalized to a multi-filamentous complex
in a straightforward manner. The reason of this generalization is obvious since microtubules are
multi-filamentous assemblies and we will see the importance of the collective contribution from
protofilaments to the microtubule force production mechanism.

Appendix A

In this Appendix we will derive the ratchet equation Eq. (2.15) and the growth velocity Eq. (2.19).

The Brownian ratchet equation

As it was described byPeskin et. al. [9], the Brownian ratchet was represented by a growing
polymer and a one dimensional diffusive object which moves under the action of an external force
−F . The Brownian motion of the particle is described by its diffusion constantD. The external
force imprints to the particle a drift velocityv = −DF/kB T .

The origin of the coordinate system is set at the polymer end (see Fig. 2.7). If a polymerization
event takes place then the origin of the coordinate system jumps from left to right by a distance
equal to the size of a monomerδ. Effectively the particle is seen as jumping from right to left by
the same distance with a rate equal to the polymerization ratek0

on. As we can see from the diagram
shown in Fig. 2.7, for a polymerization event, when the position of the particle isx < δ, the only
contribution from jumps are coming from particles positioned atx+ δ. In the case ofx > δ, there
are jumps of particles coming tox from x + δ, however, particles that were already atx prior to
polymerization are lost, since these particles are jumping tox − δ. Similar reasonings are made
also in the case of de-polymerization. To summarize we can write the followingdiffusion-reaction
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Figure 2.7: The diagram of the Brownian ratchet (after Peskinel. al [9])

equations:

∂ c

∂t
= D

∂2 c

∂ x2
+
F D

kB T

∂ c

∂ x
+ k0

on

(
c(x+ δ, t)− k0

off c(x, t)

)
if x < δ (2.35)

and

∂ c

∂t
= D

∂2 c

∂ x2
+
F D

kB T

∂ c

∂ x
+k0

on

(
c(x+δ, t)−c(x, t)

)
+k0

off

(
c(x−δ, t)−c(x, t)

)
if x > δ (2.36)

These equations can be rewritten in a more compact form line Eq. (2.15).
Given the geometry, particles cannot cross the boundary at the left atx = 0, so we have to

impose the condition that the current on this boundary is zero:

−D∂c(0, t)
∂x

− DF

kBT
c(0, t) = 0 (2.37)

Derivation of the growth velocity Eq. (2.19)

We are going to solve the Eq. (2.15) in the stationary case∂c/∂t = 0, i.e. c(x, t) = c(x) in the
case of high diffusion, and considering no polymerizationk0

off = 0. Then Eq. (2.15) becomes:

∂2c

∂x2
+

F

kBT

∂c

∂x
+
k0
on

D

(
c(x+ δ)−Θ(x− δ) c(x)

)
= 0 (2.38)

We introduce the Laplace transform

c̃(s) =

∫ ∞
0

dx exp(−s x) c(x) (2.39)
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After making some partial integration, we have:∫ ∞
0

dx exp(−s x)
∂c

∂x
= −c0 + s c̃(s) (2.40)∫ ∞

0

dx exp(−s x)
∂2c

∂x2
= − ∂c

∂x

∣∣∣∣
x=0

− s c0 + s2c̃(s) (2.41)

We multiply both sides of Eq. (2.38) byexp(−s x), and we integrate afterx in order to derive
the corresponding equation for the Laplace transformc̃(s). Using the last two equations and the
boundary condition from Eq. (2.37) we can express the Laplace transform as

c̃(s) =

s c0 + k0
on

D

(
1− exp(s δ)

)∫∞
δ

dx exp(−s x) c(x)

s2 + F
kBT

s
(2.42)

With the help of the general formula for the inverse Laplace transform of the following two
functions [25]:

L−1

[
1

s+ a

]
= exp(−a x) (2.43)

L−1

[
exp(−b s)
s2 + as

]
=

1− exp(a(b− x))

a
Θ(x− b) if b > 0 (2.44)

we calculate the inverse Laplace tranform in Eq. (2.42) and the result is the integral equation:

c(x) = c0 e
− F x
kB T +k0

on

D
kBT
F

∫∞
0
dy c(y) Θ(y − δ)

(
Θ(x− y)

(
1− e

F (y−x)
kBT

)

−Θ(x− y + δ)

(
1− e

F (y−x−δ)
kBT

))
(2.45)

We use this self-consistent equation in order to find aperturbativesolutionc(x) in the high diffu-
sion limit, i.e. for small parameterε = k0

onδ
2

D
� 1. In the absolute limit of infinite diffusion the

solution is obviously in the zero-approximationc0(x) = c0 e
− F x
kB T . If we insert this solution into

Eq. (2.45) we obtain as a first order approximation:

c1(x) = c0 e
− F x
kB T + ε c0

(
1 + F x

kB T

)
e
−F (x+δ)

kB T − e−
F δ
kB T(

F δ
kB T

)2 , if x < δ (2.46)

c1(x) = c0 e
− F x
kB T + ε c0

(
1 + F x

kB T

)
e
−F (x+δ)

kB T −
(

1 + F (x−δ)
kB T

)
e
− F x
kB T(

F δ
kB T

)2 , if x > δ (2.47)

It is important to notice the continuity of the above solution atx = δ, a property that is true
for the general solution Eq. (2.45) also. Given the above approximate solution, we can evaluate
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Px>δ =
∫∞
δ dx c1(x)∫∞
0 dx c1(x)

, and the growth velocityv = δ k0
on Px>δ is given finally by:

v(F ) = δ k0
on

e− F δ
kB T − 2 ε

e
−2 F δ

kB T

(
e

F δ
kB T − F δ

kB T
− 1
)

(
F δ
kB T

)2

+O(ε2) (2.48)

We can check that in the high diffusion limit,ε → 0, the velocity becomes the thermodynamic
expression (see main text):

v(F ) = δ k0
on e

− F δ
kB T (2.49)

Appendix B

In this appendix we show that for buckled semi-flexible polymers√
k/2kBT |x0| � 1 (2.50)

The shape equation for a buckled rod is given by ([26])

EI t× d2 t

d s2
= F× t (2.51)

whereEI is the bending rigidity,t is the tangent,s is the arc-length, andF is the applied force.
Based on dimensional analysis, from this equation we expect the force to be of the form

F ≈ EI

ξ2
(2.52)

whereξ is a characteristic length, which is given by the deformation of the rod. In the case of large
deflections, this length must be smaller than the contour lengthL

ξ . L (2.53)

In the limit of small fluctuations, the deflected rod is mapped to a Hook spring which is compressed
by an amount|x0|. Therefore

F = k |x0| (2.54)

From Eq. (2.52) and Eq. (2.54), it follows that the spring constant must be

k ≈ EI

ξ2|x0|
(2.55)

We use the last formula together with the relation between the bending rigidity and the persistence
lengthlp,

EI = lp kBT (2.56)

and evaluate √
k/2kBT |x0| ≈

√
lp|x0|
ξ2
� 1 (2.57)

Indeed,ξ . L, for semi-flexible polymers we havelp & L, and thereforelp � ξ. On the other
hand|x0| ≈ L & ξ.



Chapter 3

Microtubule Force Production

3.1 Introduction

Polymerization ratchets form a subclass of molecular motors, that includes microtubules as a very
important component in many cellular processes. This is so because microtubules are able to
develop pushing and pulling forces due to polymerization and depolymerization. For example,in
vivo studies demonstrate the role played by microtubules in orgalelle positioning, like anchoring
the nucleus, or chromosome position control during the cell division [27, 28].

In vitro experiments make it possible to evaluate the values of the forces that microtubules can
develop during their polymerization. Experimental data of this kind first became available in 1997
[19]. In the experiment in question, microtubules are let to grow against a glass barrier. The
microtubule ends then sit caught underneath the barrier overhang and eventually buckle, which
proves that internal elastic stress is developed during growth. Video microscopy techniques are
used in order to monitor the evolution of microtubule length in time, so that their velocity of growth
can be evaluated. The elastic force can be evaluated also by analyzing the shape of the polymers on
the basis on elastic theory for bent rods [26]. Subsequent experiments generated new data showing
that microtubules can develop forces in the range of a couple of piconewtons [19, 29, 20].

Modeling the measuredforce-velocityrelation could lead to insight in both the polymerization
mechanism and microtubule structure. Indeed, the obvious first thing to do is to employ the Brow-
nian ratchet concept, that we presented Chapter 2, and to apply it in the form of a single pushing
filament. We will see that thisone-filamentrepresentation of the microtubule cannot satisfactorily
interpret the data, and therefore modeling is needed for a multi-filamentous complex. This is obvi-
ously expected to be more realistic sincein-vivo microtubules are composed ofN = 13 filaments
[4]. It is the aim of this chapter to theoretically investigate in detail different aspects of the collec-
tive growth of a filamentous bundle. Simply havingN filaments in our system does not only have
the consequence of generating higher forces during pushing. For example, the collective features
of the model also introduces additional details of a geometric origin, like the lateral offset between
filaments, for which we anticipate a non-trivial influence on the velocity of growth. Modeling
microtubules as aN-filamentcomplex, it is the right place to introduce the lateral affinity between
filaments, based on model and data interpretation. The affinity between filaments is what keeps
them together in a tubular complex like microtubules. The value of the corresponding parameter is
expected to be also important to other aspects of microtubule dynamics, not only growth, like the
loss of GTP-cap, or microtubule disassembly after the event of catastrophes.

Based on the polymerization ratchet mechanism that we presented in the previous chapter, we
show in the following a force generation mechanism for growing microtubule, which converts into
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work the chemical polymerization energy of GTP tubulin. In our model, the hydrolysis of GTP
tubulin, which takes place shortly after its addition, does not play any role in force production. For
this to be true it is sufficient to assume that the conformational change of tubulin during hydrolysis
is not significant, and therefore it cannot result in a new step size during pushing against the load.

3.2 A Single Filament Model for Microtubules

For our analysis we use three sets of data for theforce-velocityrelation [19, 29, 20], which we
define as S0, S1, and S2 (see Fig. 3.1). In the following we will first review a naive interpretation
of this data based on the general formula, Eq. (2.8). If all the thermodynamic requirements that
validate this equation are fulfilled, we still have to remember that Eq. (2.8) describes only a single
filament polymer, andnotmulti-filamentous complexes like real microtubules. In this case, the key
difference will be the value of the step sizeδ∗, which is expected to be different than the size of a
subunit,i.e. δ = 8nm:

v(F ) = δ∗
(
k0
one
− q F δ

∗
kB T − k0

offe
− (q−1)F δ∗

kB T

)
(3.1)

The value of the parameterq was predicted by the Brownian ratchet model to beq = 1 (see Eq.
(2.8)). However, we have already suggested that different values for this parameter may actually
correspond to different dynamic processes than just polymerization. Nevertheless we argue that it
is reasonable to stick to the valueq = 1 in order to make an analysis that is based on a minimal set
of assumptions.

Indeed, Dogteromet. al. [19] kept in their discussiononly two different values,q = 1 and
q = 0, in order to keep the number of fitting parameters to a minimum. They found that the choice
q = 1 is the most appropriate of the two, as long as the other fitting parameters werek0

on, k
0
off ,

and the step sizeδ∗. However, their result for the step sizeδ∗ was higher than the expected value,
which is simply the average step per inserted subunit1:

δ∗ =
δ

N
(3.2)

whereN is the number of protofilaments in the assembly.
Since this is the only reasonable assumption in the absence of any more detailed model of

the microtubule structure, a higher value ofδ∗ only proves the need for such a model, which
hopefully might cast more insight into the force production mechanism in microtubules [19]. These
conclusions apply as well to the newer sets of data, S1 and S2, as we can see from the summary of
our analysis that we present in Table 3.1 and in Fig 3.1.

A different point of view to the same problem was adopted by Kolomeiskyet.al. [30]. Unlike
[19], these authors considered the parameterq as a fully independent fitting parameter, together
with the polymerization ratesk0

on andk0
off , and the step sizeδ∗. The full expression used for data

fitting was Eq. (3.1). However, little discussion was devised to the physics thatq describes, which
may correspond to different dynamics and have the unfortunate feature that it has the same time
scale as the polymerization process itself. In other words, in the case of good fit quality, it cannot
be obvious from Eq. (3.1) what are the exact factors responsible for force generation in growing
microtubules.

1If the filaments grow equally, and ifM is the number of monomers within a single filament, then the total number of the inserted monomers is
Mtotal = N M . The length of the polymer isL = δM , so the average step per inserted subunit must beδ∗ = L/Mtotal = δM/N M = δ/N .
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Figure 3.1: In the simplest approach one can approx-
imate mirotubules as single filament complexes. A
generic analytical formula Eq. (3.1) gives a good fit
quality, but the growth step size could be overesti-
mated in this naive description. The size of a tubu-
lin dimer is δ = 8nm. Fitting these data suggests
that the average step sizeδ∗ could be well beyond
the value of8nm. A similar fit quality was repro-
duced by Kolomeiskyet. al. [30] on the data set
S0, but the average step size was constrained of hav-
ing an upper bound at8nm. However, the general
premises, on which the fit formula Eq. (3.1) was de-
rived, cannot justify this limit for the step sizeδ∗. In
conclusion, these results call into question the inter-
nal structure of microtubules and models are needed.
Dashes line:v(F ) = v(0) exp(−F δ/kB T N). Dot-
ted line: v(F ) = v(0) exp(−F δ/kB T ). (a) Set
S0, δ∗ = 18nm, Fstall ≈ 4.1 pN ; (b) Set S1,
δ∗ = 18nm, Fstall ≈ 3 pN ; (c) Set S2,δ∗ =
12nm, Fstall was not defined (see also Table 3.1).
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Following Kolomeiskyet.al. [30], we employ Eq. (3.1) in fitting all three sets of data. The
results, shown in Table 3.1, are consistent with Ref. [30], where the analysis was done on the only
available data set at the time, S0. In making the fit on S0, we obtain slightly different values for the
on- andoff- rates, similar values for the stall force (data not shown), but exactly the same values
for q.

A rather major difference with Ref. [30] in our analysis is the interpretation and the value of
the step parameterδ∗. Unlike Ref. [30], we do not set any upper limit toδ∗. The premises of Eq.
(3.1) do not impose such a restriction. As we show in Table 3.1, we have obtained aneven better
fit quality for δ∗ > 8nm. This is true for all data sets, and we show some examples in Fig. 3.1 for
δ∗ = 12nm andδ∗ = 18nm.

A close look at the results in Table 3.1, shows that for a wide interval of values4nm < δ∗ <
18nm the fit quality is not significantly different for all sets of data. We thus face an indeterminacy
in the value forδ∗, quite apart from the fact that this interval is well beyond the expected value
suggested in Eq. (3.2).

Could it be that the too high degree of generality, and hence ambiguity of Eq. (3.1), is re-
sponsible for the unexpected high values for the average step size? Could it be that open sheet
like structures [31, 5, 10], which normally span more than a couple of dimer lengths in growing
microtubules, be in reality responsible for the apparent large step sizes? These questions under-
score that the next natural step is modeling the internal structure of microtubules in order to see its
implications on the force production mechanism.

3.3 A Model for Collective Growth

Given the high value for the step sizeδ∗, obtained from fitting theforce-velocityrelation, Dogterom
et.al. speculated that the internal structure of the microtubule end might be responsible [19]. In-
deed, if a single microtubule protofilament is pushing against the barrier, subunits can be added at
the tip of this protofilament in a Brownian ratchet fashion, and the step sizeδ∗ could be close to
the full length of a tubulin dimer. However, under the action of the force, it is expected that the
growth velocity of this protofilament should decrease, and nothing then prevents the other protofil-
aments from caching up in length with the most advanced protofilaments. If so, we guess that the
microtubule end is rather blunt, and this may justify Eq. (3.2) for the step size.

A more detailed description of how the microtubule end structure might be involved in the
mechanism of growth was given by A. Mogilner & G. Oster [23] in 1999. Cording to this model
a subsidyeffect could explain the observedforce-velocitydata. More precisely, it is assumed that
there is a most forward filament, which is propping up the microtubule against the wall. This means
that gaps between the wall and the tips of the other filaments are wide enough for subunits to be
inserted with high probability rate in the fashion of a thermal ratchet, allowing the other filaments
to catch up. Does this really mean that in the presence of ahigh force, the microtubule end isblunt?

In the following, we present a modified version of the original model that Mogilner & Oster
proposed for the microtubule growth. The spirit of the model is the same,i.e. the subsidy effect is
still at the heart of the model. As a first difference, while the original model defines a continuous
distribution of filament tips, the discrete character or our model version is shown to be the right
feature, since, besides being more realistic it also gives the right thermodynamic expression for
the stall force (see below). Another important difference is that we take into account the lateral
bonding between filaments. The prime reason is, of course, this is a realistic feature. Moreover
we will show that there is a relation between the spatial distribution of the filament tips, which
corresponds to microtubule geometrical structure, and the velocity of growth. And we will see that
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Set δ∗ (nm) k0
on (min−1) k0

off (min−1) q χ2

S0 8/13 3822 1976 1 0.119
1 1601 457 1 0.115
2 628 55 0.69 0.104
4 290 3.09 0.40 0.101
6 192 2.9×10−1 0.28 0.098
8 144 3.2×10−2 0.21 0.095
12 96.7 4.4×10−4 0.14 0.089
16 72.72 6.4×10−6 0.11 0.086
18 64.7 7.8×10−7 0.09 0.085

S1 8/13 9369 6304 1 0.0147
1 3752 1863 1 0.10
2 1215 270.5 1 0.019
4 486.8 14.06 0.7 0.0088
6 317.5 2 0.48 0.009
8 237.2 3.5×10−1 0.37 0.01
12 158.2 1.4×10−2 0.254 0.011
16 118.7 6.7×10−4 0.19 0.011
18 105.5 1.5×10−4 0.17 0.011

S2 8/13 5780 1914 3.86 1.6
1 2253 0 2.70 1.6
2 1175 0.19 1.20 1.4
4 574 0 0.50 1.33
6 383 0 0.38 1.32
8 288 0 0.28 1.31
12 184 0 0.16 1.27
16 126 0 0.10 1.27
18 116 0 0.10 1.27

Table 3.1: Theforce-velocitydata is available as three independent sets: S0, S1, and S2. In evaluatingχ2 we set the
average standard deviation in velocity as being the same for all data. Different values of the step sizeδ∗ are chosen,
and for each such value the fit parameters are the kinetic ratesk0

on, k0
off , and the parameterq. A striking feature of

these results show 1) an improved fit quality for higher and higher step sizeδ∗, and 2) small values forq at large step
size values, suggesting stronger effects of the load on theoff-rate ratheron-rate. The values ofδ∗ could be even higher
as the correspondingχ2 is found to be even slightly lower (data not shown).
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lateral bonding does make a difference in the distribution of the filament tips.

3.3.1 Definition of the Model

We have presented in Section 2.6 a simple geometrical picture of a semi-flexible filament which
is growing against a fixed barrier. This geometrical representation is the most convenient one in
order to generalize the Brownian ratchet model from a single filament to a more complex assembly,
which consists of many filaments.

Following [23] the tubular polymer is represented as a cylinder unfolded in a plane. We con-
sider the microtubule as a complex ofN protofilaments, which grows against a non-fixed wall.
A constantforce F is pushing the wall, opposing the microtubule growth (see Fig. 3.2). The
longest filament supports the load and defines the wall position. Each filament polymerizes and
depolymerizes with rates that depend on the gap between the wall and the filament tip. We denote
by kon(i) the addition rate of a new subunit at the tip of thei−th filament, and bykoff (i) its re-
moval rate. Letx(i) be the distance between the wall and the tip of thei−th filament. Consider
the situation in Fig. 3.2. The newly added subunit has with adjacent filaments lateral contacts of
lengths

y1(i) = x(i− 1)− x(i)

y2(i) = x(i+ 1)− x(i) (3.3)

We assume that the energy that comes from the direct lateral contact is proportional to the length
of the direct lateral contact between adjacent filaments. Then the corresponding free energy that
comes from the lateral interaction is∆G||(i) = ε|| (y1(i) + y2(i)), for the case shown in the figure,
where the constantε|| represents the energy per unit of length of lateral contact. In the most general
case, one can write this energy as

∆G||(i) = ε||

(
H(y1(i)) +H(y2(i))

)
(3.4)

where

H(y) =

 0, if y < 0
y, if 0 ≤ y < δ
δ, if y ≥ δ.

(3.5)

In defining the functionH(y), we take into account that the lateral contact between asubunitand
an adjacent filament cannot be larger than the subunit sizeδ, and also a negative argument ofH(y)
means no lateral contact.

We consider∆G0 as the free energy that comes from theend-to-endcontact between any two
subunits. If due to the polymerization of the consideredi−th filament the wall advances by a
distanceδ − x(i), then the work done against the wall is

W (i) = F

(
δ − x(i)

)
(3.6)

The net free energy that is released after the polymerization of the considered filament is:

∆G(i) = ∆G0 + ∆G||(i)−W (i) (3.7)

Following the arguments presented in Section 2.2, the net free energy can be related to the ratio
between the polymerization and depolymerization rates:
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Figure 3.2: The polymerizing microtubule: the simple geometrical picture of a pushing semiflexible filament, pre-
sented in Fig. 2.6, allows a straightforward generalization from a single filament model to a bundle made of an
arbitrary number of filaments. If we consider thei−th filament, for a newly inserted subunit (shown shaded) the
individual on- andoff- rates,kon(i) andkoff (i), are given by a) the corresponding amount of work, used to push
against the loadF , i.e. W (i) = F (δ − x(i)), and b) energy gain due to the lateral affinity between the inserted
subunit and adjacent filaments, which is modeled as being proportional to the new lateral contact lengthy1 + y2, i.e.
∆G||(i) = ε|| (y1 + y2).
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kon(i)

koff (i)
= exp

(
∆G0 + ∆G||(i)−W (i)

kBT

)
(3.8)

The last relation is simply a generalization of Eq. (2.3) to a multi-filamentous assembly. If we
define thebare probability ratesk0

on andk0
off by relating them to the free energy∆G0, as was

done in Eq. (2.4), then Eq. (3.8) becomes

kon(i)

koff (i)
=

k0
on

k0
off

exp

(
∆G||(i)−W (i)

kBT

)
(3.9)

We write the individual ofon-andoff- rates separately in perfect analogy with Eq. (2.7):
kon(i) = k0

on exp
(
q1∆G||(i)−q2W (i)

kBT

)
koff (i) = k0

off exp
(

(q1−1)∆G||(i)−(q2−1)W (i)

kBT

) (3.10)

We stress that the only condition that these relations should fulfill is compatibility Eq. (3.9). The
parameterq2 describes the change of theoff- rates in the presence of the load, just as we have
described in Section 2.2. Similar arguments allow us to introduce the parameterq1.

We mention that, if we takeε|| = 0 (∆G|| = 0) andq2 = 1, we exactly return to the models
proposed in Ref. [23] and Ref. [32],i.e. no lateral interaction and no change inoff- ratek0

off in the
presence of the load.

3.3.2 TheForce-VelocityRelation

In the frame of the current model, we define the velocity of a growing polymer as given by the
average displacement of the wall per unit of time. Naturally, the velocity can be defined as a time
average of the length increase of the polymer assembly that grows following Eq. (3.10). However,
in a steady state this time average can be replaced by an average over an ensemble, which is defined
by the set of all possible states of the polymer. For our problem, thestateof a growing polymer is
defined by the set of all filament tips positions from the wall,i.e. α = {x(i)}i=1,N (see Fig. 3.2).
We define in this way thepolymer stateα because the microtubule is supposed to be very long
(eventually infinite), so the length of a microtubule does not matter in defining the configuration.
Indeed, for the Markovian process described by Eq. (3.10), the initial conditions are not relevant,
and so neither is the length of the polymer. If a long enough time for a microtubule to grow and
reach the steady state is given, any configurationα appears with a certain frequency that defines
the probabilityp(α) for the occurrence of that configuration.

Since the average displacement is given by the difference between the displacement due to
subunit assembly and the displacement due to subunit removal, we can write the velocity of growth
as

v(F ) = von − voff = 〈kon(F )∆xon〉α − 〈koff (F )∆xoff〉α (3.11)

The above averages are computed over all possible microtubule states (configurations)α ∈ C.
Let us consider a particular configurationα. If the i-th filament polymerizes or depolymerizes,
the distance that wall advances or regresses depends, of course, on the considered configuration
α. We denote those distances by∆xon(i, α) and∆xoff (i, α), respectively. Also, the rates given
by Eq. (3.10) depend on the configuration, and the dependence comes from the displacement
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of the wall and the added or removed lateral contact lengths, which we denote asyon(i, α) and
yoff (i, α), respectively. Indeed, these rates are dependent on the other filament tips positions. For
the considered configuration, the velocity of growth is:

v(F, α) =
N∑
i=1

(
kon(i, α) ∆xon(i, α)− koff (i, α) ∆xoff (i, α)

)
(3.12)

To compute theforce-velocityrelation Eq. (3.11), we average the last equation over the whole
setC = {α} of configurations:

v(F ) =
∑
α∈C

p(α) v(F, α)

=
∑
α∈C

N∑
i=1

p(α)

(
kon(i, α) ∆xon(i, α)− koff (i, α) ∆xoff (i, α)

)
(3.13)

The force dependence of the velocity of growth comes from the force dependence of the probability
distributionp(α), and from the kinetic rateskon(i, α) andkoff (i, α) according to the rules Eq.
(3.10).

3.3.3 The Expression of the Stall Force and its Derivation

An important quantity is the maximal force that can be produced by microtubules due to the poly-
merization process. We call as the maximal force thestall force, and it is defined as the force for
which the average velocity of growth becomes zero. Given the model considered, we can give an
exact analytical expression for the stall force. What follows is the most general derivation, while
in Ref. [32] we already presented a restricted analysis based on a particular case of the present
model.

Let us consider an arbitrary configurationαold, and the configurationαnew which is obtained
from αold if a subunit is added at thei−th filament. The probability rate of the transition from the
old to thenew state is

R(αold → αnew|i+) = p(αold)kon(i, αold) (3.14)

and the corresponding reversal rate from thenew to theold state

R(αnew → αold|i−) = p(αnew)koff (i, αnew) (3.15)

for the samei−th filament depolymerizes back to its original state. If the above transition rates are
equal foreveryfilament and foreveryconfiguration (detailed balancecondition)

R(αold → αnew|i+) = R(αnew → αold|i−), for all i = 1, N, ∀αold ∈ C (3.16)

then this condition is sufficient for the microtubule to be stalled. Here we show how such a detailed
balance condition can be used to derive the stall force.

We consider first the Eq. (3.16) in more detail:

p(αold)k
0
on exp

(
q1ε||yon(i, αold)− q2F∆xon(i, αold)

kBT

)
=

p(αnew)k0
off exp

(
(q1 − 1)ε||yoff (i, αnew)− (q2 − 1)F∆xoff (i, αnew)

kBT

)
(3.17)
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Figure 3.3: How the detailed balance principle can be used in order to derive the stall force. We exemplify the proof
by taking an example of a polymer made of N=3 filaments. In three different steps, a subunit is added at each filament,
which means that we end up in the same configuration. The overall displacement of the wall isδ and the total added
lateral length isN δ = 3 δ.
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Figure 3.4: The stall force in both interacting and non-interacting filaments case. In both cases the ratiokon/koff = 4.
The interaction constant wasε|| = 0.2 pN . The simulation data clearly shows that the value for the stall force given
by Eq. (3.24), solid lines, was successfully verified.

whereyon(i, αold) and∆xon(i, αold) are the added lateral contact length and wall displacement,
respectively, if thei−th filament polymerizes and the mirotubule is initially in the stateαold. Anal-
ogous,yoff (i, αnew) and∆xoff (i, αnew) are the removed lateral contact length and wall displace-
ment if the microtubule is in the stateαnew and from the samei−th filament a subunit is removed.
Given thatyon(i, αold) = yoff (i, αnew) and∆xon(i, αold) = ∆xoff (i, αnew), the above equation
becomes:

p(αold)k
0
on = p(αnew)k0

off exp

(
−
ε||yon(i, αold)− F∆xon(i, αold)

kBT

)
(3.18)

Starting from a given configuration, it is possible to end up in the same configuration after a
finitenumber of steps removing and/or adding subunits, although the wall position is changed. For
example, this may happen if a subunit is added to each filament (see as an example Fig. 3.3). Let
us consider the microtubule in an arbitrary configurationαi1. Suppose that at thei1−th filament a
subunit is added through the polymerization process, and as a consequence the microtubule is in a
new stateαi2. Now, we consider the new state and suppose that thei2−th filament (different from
the previous one) polymerizes, and the new configuration of the microtubule becomes nowαi3,
etc. We continue this reasoning until a subunit is added at each filament. The overall displacement
of the wall is preciselyδ, as we show in Fig 3.3. Of course, the last stateαiN+1

is identical to the
original oneαi1. We rewrite Eq. (3.18) explicitly for each step described above.

p(αi1)k0
on = p(αi2)k0

off exp

(
−
ε||yon(i1, αi1)− F∆xon(i1, αi1)

kBT

)
p(αi2)k0

on = p(αi3)k0
off exp

(
−
ε||yon(i2, αi2)− F∆xon(i2, αi2)

kBT

)
· · ·

p(αiN )k0
on = p(αi1)k0

off exp

(
−
ε||yon(iN , αiN )− F∆xon(iN , αiN )

kBT

)
(3.19)
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Multiplying all of the above equations, all the probabilities{p(αik)}k=1,2,...,N cancel and we obtain:(
k0
on

k0
off

)N

= exp

(
−
ε||
∑N

k=1 yon(ik, αik)− F
∑N

k=1 ∆xon(ik, αik)

kBT

)
(3.20)

If a subunit is added at each filament tip then the total wall displacement is precisely the subunit
sizeδ (see also Fig. 3.3)

N∑
k=1

∆xon(ik, αik) = δ (3.21)

In the same condition, we can show that the total added lateral contact length isNδ

N∑
k=1

yon(ik, αik) = Nδ (3.22)

Indeed, consider theN filament microtubule in a certain configurationαi1 . If we add a subunit
at each filament, and we end up in the same configuration, then the newly added total lateral
contact length

∑N
k=1 yik can be written as a sum of all newly added lateral contact length between

any two adjacent filaments. Between any two adjacent filaments there is aδ newly added lateral
contact length. Because there areN lateral contacts for a tubular N filament polymer, it follows∑N

k=1 yik = Nδ. Then, using Eq. (3.21) and Eq. (3.22), the condition Eq. (3.20) becomes(
k0
on

k0
off

)N

= exp

(
−
ε||N δ − F δ

kBT

)
(3.23)

The last equation is a necessary condition for detailed balance, which is equivalent to the condition
for the microtubule to be stalled. From this the value of the stall force follows

Fstall = N

(
kBT

δ
log

k0
on

k0
off

+ ε||

)
(3.24)

3.3.4 Comments on the Stall Force

The derivation of the stall force is the first output that we have presented from our model. Before
proceeding further we have to make some remarks about the result Eq. (3.24)

1. First of all we note the linearity in the number of filaments of the stall force expression in
Eq. (3.24). The expression presented by Mogilner & Oster [23] does not reproduce this feature.
The origin of this difference is the continuous interpretation of their filament tip distribution [32].
We consider that our discrete rendering of this distribution is a more realistic feature.

2. The proportionality relationFstall ∝ N is an interesting feature. For instance, if we neglect
ε||, we notice that the stall force is exactlyN times larger than the stall force a single filament
Brownian ratchet, Eq. 2.10. In spite of its simplicity, this additive property of the stall force is far
from trivial. Indeed, not all the filaments are pushing the wall at once, as we can see in the example
shown in Fig. 3.2.

3. A couple of important parameters of the model do not show up in the expression Eq. (3.24).
Two of them areq1 andq2, i.e. the parameters that describes the distribution for theweightof
the lateral affinity and the load on theon- andoff- rates (see Eq. (3.10)). There is still another
parameter that has no influence on the stall force. This parameter is the lateral offset between
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filaments. We anticipate that computer simulations show a strong dependence of the velocity of
growth on this parameter, as is shown in Fig. 3.7. The absence of all these details in the stall
force expression, makes Eq. (3.24) a strong candidate for independent experiments and stall force
measurements, which hopefully will help in evaluating numerically the smalloff- rate k0

off in
growing microtubules, and even the lateral affinityε|| [32].

4. Considering the phenomenological nature of the one-filament representation for theforce-
velocityrelation Eq. (3.1), together with the step sizeδ∗ given by Eq. (3.2), it quite remarkably
predicts the same expression for the stall force, Eq. (3.24). We will see, however, from computer
simulations, that the calculatedforce-velocityrelation cannot be approximated by the same equa-
tion Eq. (3.1). In other words, the stall force is theonly point on theforce-velocitycurve, which
the phenomenological approach Eq. (3.1) and our model have in common.

5. Given the lateral affinity between filaments, we can model the microtubule seam by choosing
a different value for the constantε||. Even in this case the stall force is linear in the number of
filaments. If the linear density energy constant isε′|| at the seam, andε|| for the rest, then we get
after repeating the same steps of as before

Fstall =
kB T

δ

(
N log

k0
on

k0
off

+ (N − 1) ε|| + ε′||

)
(3.25)

3.4 Monte Carlo Simulations of the Model

We simulated the growth of a polymer consisting ofN = 13 parallel filaments, each consisting
of a linear array of subunits of sizeδ. As the initial condition, the microtubule tips were set
equidistantly, so that the longitudinal offset between adjacent filaments had a given valueσ. The
overall shift between the most and the last advanced tip isS = (N − 1)σ. We have illustrated the
definition of this geometric parameter in Fig 3.7 (a) in the case ofN = 4 filaments. Although in
the case of a real microtubule we haveS = 1.5 δ [4], we can input different values for the overall
shift in our simulations in order to investigate its influence on the growth velocity.

For each time stepdτ we chooseN times a filament at random. For each chosen filament, a
subunit was added or removed with a probabilitykon(i)dτ andkoff (i)dτ , where the indexi is the
index of thei−th filament, and the kinetic rateskon(i) andkoff (i) were given by Eq. (3.10).

3.4.1 TheForce-VelocityRelation

In the following, we will present the fitting procedure that we used in order to compare the model
with the three experimental data setsS0, S1, andS2 [19, 29, 20]. From our Monte Carlo simula-
tions the growth velocity was computed by dividing the displacement of the wall overm time steps
by mdτ . This was repeated for many values of the forceF in order to obtain theforce-velocity
relation.

In looking for the optimal fit parameter values, we can first make the important observation that
instead of two free parametersk0

on andk0
off , we can use only their ratiok0

off/k
0
on. The reason is

very simple, if we look back at our definition for the velocity of growth Eq. (3.13). Indeed, the
configurational probabilityp(α) is in fact a function only of the rate ratiok0

off/k
0
on. Then, with the

help of Eq. (3.13), we have for an arbitraryλ

v(F, λ k0
on, λ k

0
off ) = λ v(F, k0

on, k
0
off ) (3.26)
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Figure 3.5: Comparison between the simulated model and experimental data set S0. The computedforce-velocity
curve shows little sensitivity in changing the rate ratiok0

on/k
0
off . The inset shows the large interval of the calculated

stall force values6 pN < Fstall < 20 pN . Other parameters:kB T = 4.1 pN nm, S = 1.5 δ, δ = 8nm.

If we choseλ = 1/k0
on, the last equation becomes

v(F, k0
on, k

0
off ) = k0

on v(F, 1, k0
off/k

0
on) (3.27)

For an arbitrary ratiok0
off/k

0
on, we can tune the value fork0

on in such a way that the calculated
velocity at zero force equals the corresponding experimental value. We stress that the values of
the velocity at no force are measured in independent experiments, since these are the velocities of
freely growing microtubules [19]. Moreover, we can notice the small error bars of these velocities
in Fig. 3.1.

The only free parameter values, which we adjusted in our simulations, were the ratiok0
off/k

0
on

and the lateral affinity parameterε||. We kept fixed the valueq1 = 0.5 in the rates Eq. (3.10) for all
simulations that we present in this chapter. The choice of this value for the parameterq1 is largely
an aesthetic one. First, different values for this parameter do not lead to qualitatively different
results, and second, we do not need to complicate our analysis into by performing unnecessary
parameter tuning. We also setq2 = 1.0 in all simulations that computed theforce-velocityrelations
presented in this chapter, based on arguments already presented both in the previous and present
chapter. We will still present, however, a brief discussion on this choice at the end of this section.

The results of our simulations are presented in Fig. 3.5 and Fig. 3.6. Having only two free
parameters,k0

off/k
0
on andε||, we see from these figures that a good fit quality can be obtained for

significantly different values of the free parameters. For example, in the case of data setS0, the
force-velocityis not very sensitive to the model parameters in the regime of small force values
(Fig. 3.5). The difference between these curves is significant only for large forces, and hence the
ambiguity in the stall force value for this set of data. The inset of Fig. 3.5 shows that, in the frame
of our model, the stall force values are within the interval6 pN < Fstall < 20 pN .
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Figure 3.6: Comparison between the simulated model and experimental data sets S1& S2. Other parameters:kB T =
4.1 pN nm, S = 1.5 δ, δ = 8nm.
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Data n v(F=0) k0
on/k

0
off ε|| Fstall q1 q2 χ2 χ̃2 = χ2/(n− 1)

Set (# pts) (µm/min) (pN) (pN)
S0 13 1.21 20/1 0 19.9 0.5 1 0.21 0.017

20/5 0.15 11.1 0.5 1 0.15 0.012
20/10 0.15 6.5 0.5 1 0.13 0.011
20/10 0.30 8.51 0.5 1 0.13 0.011

S1 6 1.88 16/1 0 3.13 0.5 1 0.04 0.008
25/21 0.15 3.11 0.5 1 0.07 0.014
25/20 0.15 3.31 0.5 1 0.12 0.024
20/20 0.25 3.25 0.5 1 0.09 0.018
20/20 0.30 3.90 0.5 1 0.18 0.036

S2 11 2.4 20/10 0 4.61 0.5 1 2.5 0.25
20/14 0.15 4.32 0.5 1 2.1 0.21
20/16 0.15 3.43 0.5 1 2.47 0.24
20/20 0.30 3.9 0.5 1 2.18 0.218

Table 3.2: Summary of the simulation based analysis of theforce velocityexperimental data setsS0, S1 andS2. We
computedχ2 considering that the standard errorsσ0 are the same for all data. Thenon-weightedχ2 is computed
as the sum of the squares of the differences between experimental and calculated values. Theweightedparameter is
calculated as̃χ2 = χ2/(n − 1), wheren is the number of points in the corresponding data set. The first point of
each data set,i.e. the velocity at zero force, was used in order to derive a constraint between the ratesk0

on andk0
off .

With this constraint, the resulting free parameter is the rate ratio. However the number of independent data points
becomesn − 1. We note that̃χ2 falls in the same range of values for data setsS0 andS1, suggesting a difference in
the composition of these sets and the setS2. In making the fit, the only free parameters were the rate ratiok0

off/k
0
on

and affinityε. Other parameters:kB T = 4.1 pN nm, S = 1.5 δ, δ = 8nm.

In the case of data setsS1 andS2, simulations with different sets of values for the free param-
eters also gave a good fit quality. Unlike data setS0, these new data sets suggested a rather more
narrow window for the stall force,3.5 pN < Fstall < 4.5 pN . The reason might be that while
these data sets are in the same range regarding the force values,Fstall < 5 pN , the velocities of
freely growing microtubules are in a different range in the cases ofS1 andS2 data sets than in the
case ofS0. Then, a faster decay of the velocity with the increase of force in the cases ofS1 and
S2 data sets could result in a smaller ambiguity in making the extrapolations when the stall force
is evaluated.

Although the stall force can be better evaluated in the case of data setsS1 andS2, we can see
that the present model can only poorly extract the lateral affinity between microtubule filaments.
The original calculations and simulations were done in the case of no lateral bonding,ε|| = 0
[23, 32]. The same holds true also for the new data setsS1 andS2, as we can see also from Table
3.2. Interesting enough, we will see in the next chapter, that the same values for the goodness-of-
fit parameterχ2 can be obtained in the hypothesis of strong lateral bonding, even ifonly onefree
parameter is used in making the fit.

3.4.2 The Lateral Offset of the Filaments and its Implications in Growth

The decay rate of the velocity with increasing force is strongly dependent on the the longitudinal
offset between protofilamentsS. Of course, the longitudinal offset (see Fig. 3.7 (a)) is a fixed
parameter during the growth of the real microtubule and has the valueS = 1.5 δ [4]. However,
we can realize that during the growth against a rigid barrier, like in the experiments described in
Ref. [19], the microtubule is pushing against the wall at a certain angle, when it buckles. This tilt
translates the intrinsic shiftS into an effective shiftS∗. We can understand the existence of such
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Figure 3.7: (a) The definition of the shiftS, exemplified for the case of four filaments. (b) The velocity of growth at a
fixed forcev(F, S) vs. the longitudinal offset parameterS. Thin line: ε|| = 0.0, pN . Thick line: ε|| = 1.5 pN . Other
parameters:kon = 160min−1, koff = 10min−1, F = 3 pN , kB T = 4.1 pN nm, δ = 8nm.

an effective parameterS∗ if we take the case ofS = 0. Indeed according to our model the step size
is precisely the size of a dimerδ∗ = δ, when the microtubule is pushing against the wall at a right
angle. But in the case of an arbitrary tilt, there are different step sizes. In the following, we are
not going to develop a mapping between different cases of tilt angles onto a space of the effective
parameterS∗. We just suggest a possible source of systematic errors when the velocity of growth
is experimentally evaluated.

In Fig. 3.7 (b) we show the simulation data for the velocity of growth for different shift values
at the same forceF = 3 pN . Two different cases are presented: one with no lateral interaction
between filaments and the other case with a non zero value for the lateral affinity constantε||. These
data clearly show a dependence of velocity on the geometrical structure of the microtubule. One
immediately notices some special values for the shiftS for which the velocity drops in magnitude
significantly. In Appendix B we identify thesemagicnumbers as those shift valuesS for which
at least two filament tips may be at the same distance from the wall. As an example, the most
unfavorable case for the velocity,i.e. the lowest value at a given force, corresponds to the situation
when all filaments are perfectly aligned (no offset,σ = 0 andS = 0, soδ = δ∗, see Fig. 3.7 (b)).
This simulation proves that we get higher velocities of growth in the case of smaller stepsδ∗, since
the rates of growth Eq. (3.10) are normalized by the Boltzmann factor, and become exponentially
smaller with the work done against the barrierW = F δ∗.

Even when the lateral affinity parameterε|| is switched on, there is no gain in the growth veloc-
ity, under the condition of pushing against a load Fig. 3.7 (b), ifS = 0. Here we give a simple argu-
ment why this should be so. As the next subsection will show, computer simulations prove that, at
a given force, the protofilament tips tend be distributed closely to the wall. Eventually at very high
force all the protofilaments are pushing against the wall, whenS = 0. In this case the distribution
of filament tips is nearly maximal and the velocity of growth isv(F ) ≈ N δ k0

on exp(−F δ/kB T ).
We obtain the same velocity when we switch on the lateral attraction, since the distribution of tips
is already maximal.
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For both cases presented in Fig. 3.7 (b), the velocity is periodic with the shiftS, and the
periodicity given bySperiod = (N−1)δ. Looking at the first period interval only,i.e. for S ranging
from 0 to (N − 1)δ, one can notice a symmetry axis at the midpoint of the interval. The reason of
these symmetries is given by the Markovian property of the microtubule growth (according to the
model), which is discussed in detail in Appendix B.

3.4.3 The Distribution of Filament Tips

Another set of computer simulations is concerned with the distribution of filament tips. Given
the discrete nature of our model, it follows that the tips of the protofilaments can be found only
at certain distances from the wall (see Fig. 3.2). We considered the discrete set of the positions
where the tips can be found. The microtubule was let to grow according to the rules described
above. After each time stepdτ , the number of filament tips were counted for each geometrically
allowed distance from the wall. Then, the number of filament tips found at each allowed position
was averaged after a large number of growth steps. The time of growth was large enough in order
to obtain as a result the steady state distribution of tips.

The results presented in Fig. 3.8 are given for a13 filament microtubule and the shift was
chosen to be the realistic oneS = 1.5 δ [4]. We can notice that, keepingε|| = 0 as constant, the
number ofworking filaments, i.e. the average number of filament tips within a distanceδ from the
wall, grows with the applied forceF (see Fig. 3.8 (a), (b), (c)). A similar increase in the number
of working filaments holds true if the force is kept constant and only the affinity constantε|| is
increased. We demonstrate this simple feature only for the case of zero force in Fig. 3.8 (c) and
(d).

In the case of no force and no lateral interaction, Fig. 3.8 (c), the distribution of tips is trivial,
i.e. the average number of filament tips at any distance from the wall is zero, except at the wall
where it is one. In this case the average distance between the tips of any two filaments grows as
square root in time, like a random walk problem, and hence we find a flat distribution. This means
that at least for small forces the growth is not collective and the velocity of growth is simply that
of a single filament polymer. Also, it appears that the microtubule does not assemble into a multi-
filamentous complex. However, if the lateral interaction between filaments is switched on, then
the filament tips grow together. This is exemplified in Fig. 3.8 (d) where it is shown that the tip
distribution becomes non-trivial even at zero force.

3.4.4 The Stall Force

In Section 3.3.3 we defined and computed analytically the stall force,i.e. the maximal force that
can be generated by pushing against the barrier. From the computer simulation data of the model,
the stall force can also be estimated from the force velocity curves by locating the force where
these curves cross the zero-velocity axis. The simulations were repeated for different number of
filamentsN .

We present these results in Fig. 3.4, where we show a perfect agreement between the computer
simulation data and the analytical results Eq. (3.24). We stress that, as it follows from Eq. (3.24),
the stall forceFstall does not depend on the parametersq1, q2, and neither on the geometrical
parameterS, although the velocity was shown to be highly sensitive on the shiftS (see Fig. 3.7
(b)). In performing the simulations, we explicitly checked the independence of the stall force on
these parameters.
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Figure 3.8: Distribution of tips. For any value of the lateral energy constant,ε||, the average number of filaments in a
given position from the wall is less and less as the load force is smaller and smaller (see (a), (b), (c)). The distribution
is trivially null for no load force and no lateral attraction ((c)). However, this is healed by the lateral attraction model:
for non-zero lateral energy constantε||, the tips tends to stay together (non-trivial distribution) even at zero force, as
(d) shows. Other parameters:kon = 160min−1, koff = 40min−1, kB T = 4.1 pN nm, S = 1.5 δ, δ = 8nm.
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Figure 3.9: The velocity of growth in the presence of load force for different values ofq2: q2 = 1.0 (continuous
line), q2 = 0.5 (dashed line), andq2 = 0.2 (dot-dashed line). Other parameters:ε|| = 0 pN , kon = 160min−1,
koff = 40min−1, fstall = 9.2 pN , kB T = 4.1 pN nm, S = 1.5 δ, δ = 8nm.

3.4.5 Load Effect on the off-Rate

In the final series of our simulation, we are concerned with the phenomenological parameterq2,
which describes the influence of the load on both the on- and off- rates. We exemplify in Fig. 3.9
the influence of this parameter on the velocity of growth. The particular values given to the other
fixed parameters in these simulations are not qualitatively relevant. The general feature of these
simulations is that the velocity decay rate decreases asq2 is lowered from the valueq2 = 1, i.e. no
influence of the load onkoff rate, to the valueq2 = 0, i.e. no influence of the load on thekon rate.

It is interesting to note in Fig. 3.9 the qualitative influence of the parameterq2 on the velocity of
growth at large forces. Indeed, although the stall force remains invariant at the change ofq2, some
distinctive features show up at forces larger than the stall value. For example, ifq2 = 1, the velocity
is lagging close to its zero value even when the force is well larger than the stall force. In the case
of low valuesq2 = 0.5 or q2 = 0.2, the simulations suggest that the negative velocity could become
significantly large in absolute values, even in the regime of forces close to the stall value. This can
be understood directly from the equation for the rates Eq. 3.10. Indeed, if0 < q2 < 1, the off
rates increase exponentially with force, and hence the low values of the velocity whenF > Fstall.
However, in the case of smaller off ratek0

off , we calculated smaller absolute values for the velocity
in the regime ofnegativegrowth.

With the help of these results, we speculate that, if the load has an effect onbothkinetic rates,
kon andkoff , then it should in principle be possible to observe microtubules “growing” at negative
velocities,i.e. shrinking without undergoing catastrophes. However, this effect could seriously
interfere with the dynamics of GTP microtubule cap. Indeed, if the GTP-cap is narrow, as evidence
suggests, it is expected to be lost immediately, and therefore a catastrophe event is triggered. Here
we suggest that catastrophe events are more likely at forces close to the stall force and more evident
in the case when the load affects the subunit removal ratek0

off . In this context, there is evidence
that the frequency of catastrophes is not modified in the presence of the load even at low velocities
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[33]. Therefore, this simulation study brings additional evidence to those presented in Ref. [33]
that there might be only little influence of the load on thekoff rate.

If it is possible thatq2 = 1 in the case of real microtubules, like those observed during thein
vitro grow-and-push experiments, then it could be a serious challenge to experimentally determine
when microtubules are stalled. This might be especially because there is a wide interval of force
values for which the microtubules appearstalledwithin the experimental errors.

The final observation concerns the overall shape of theforce-velocitycurve. If we look back
at the data fit Fig. 3.1, which was based on theone-filamenttheory, Eq. (3.1), we can notice an
interestingS shape of the fit, which suggests small values for the stall force whenq2 < 1, and
high values ifq2 = 1. The convexity part of this shape could be regarded as a signature of the
force effect on the removal kinetic rate. Here we report that, based on our computer simulations,
this qualitative feature does exist only in theone-filamentcase. Thesubsidyeffect smears out this
feature even in the case of two filaments. In the more realistic case ofN = 13 filaments, there was
no convexity emerging in theforce-velocitycurve even when we modified the longitudinal offset
parameterS.

3.5 Discussions and Conclusions

We have presented a collective model for the microtubule growth, developed on the basis of the
Brownian ratchet concept. The model provided a good fit quality when compared to three available
experimental data sets. The statistical analysis and data interpretation, which we have presented in
this chapter, is based on two free model parameter left for tuning,i.e. the rate ratiok0

off/k
0
on and

lateral affinity constantε||. We reported a wide range for the values for these parameters that gives
the same fit quality.

An important result of the model is the prediction for the value of the stall force,i.e. the force
for which the microtubule growth stops. The stall force is interpreted as the maximal force that can
be generated by growing microtubule. Based on the model, we have derived an exact analytical
expression, Eq. (3.24), which shows that the stall force depends only on the two fitting parameter
that we mentioned above. For two of the data sets, S1 and S2, the fit analysis suggests that, in spite
of the ambiguity of the fitted parameter values, the value of the stall force could lie within a narrow
interval of values,i.e. 3.5 pN < Fstall < 4.5 pN (see also Fig. 3.6). However, for a third set of
data, S0 [19], it is possible to have good fit quality even for stall forces up to20 pN [32] (see also
the inset in Fig. 3.5). In the case of this data set, microtubules were growing in the same range of
forces, but at lower velocities, presumably due to a lower tubulin concentration. In this case, with
the force increase, the decay rate for the velocity was lower, which made it difficult to have a clear
extrapolation at higher forces, out of data range, where the stall value is supposed to be (see Fig.
3.5).

Although, the stall force is shown not to depend on many details of the model, the velocity of
growth is sensitive to the other parameters. For example, the computer simulations show a strong
dependence of the velocity on the longitudinal offset between filaments. On the basis on the com-
puted data, shown in Fig. 3.7, we suggested that high velocities are possible if the microtubules
grow in small steps, since in this case we have a higher probability rate of growth. In real micro-
tubules,S = 1.5 δ [4], and the corresponding velocity lies in a local minimum of the velocityvs
shift curve shown in Fig. 3.7 (see also Appendix B).

There is another parameters,q2, which describes the influence of the load on theoff-rate. This
parameter was introduced in our model on phenomenological grounds, strengthened by similar
kinetic arguments like those used in the previous chapter. The Brownian ratchet model predicts
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the valueq2 = 1, which is precisely the case when the load has an influence only on the addition
ratekon. Although the stall force is invariant with this parameter, the shape of theforce-velocity
relation could be slightly influenced. However, we usedq2 = 1 in fitting the experimental data on
the grounds of making minimal assumptions. Different values fromq2 = 1 are not excluded by the
available data sets. The fit procedure then gives different values for the other parameters, but still
the same range of values for the stall force (data not shown).

In conclusion, thecollective Brownian ratchetis obviously more successful than the former
single filament variant Eq. (3.1), when compared toforce-velocitydata S0, S1, and S2 [19, 29, 20].
With the collective model we also lose the issues of the mysterious large step size valuesδ∗ >
δ = 8nm. The same data fit quality can also be obtained by making no specific assumption on the
way that theoff-rate is modified in the presence of the load. The numerical comparison between
the model and the all three available data sets gave consistent values for the stall force and also the
model parameters,i.e. the rate ratiok0

off/k
0
on and lateral affinityε||. We are still left with the open

questions of what are the precise values for the affinityε||, and to which extent theoff-rate is truly
modified by the load. The values obtained for these parameters can be tested in different types of
experiments, since the values of these parameters could have implications in microtubule dynamic
instability, and in shaping the mictrotubule end.

Appendix A: Exact Expressions for the Velocity of Growth in Two Particular
Cases

Case:S = 0, k0
off = 0, ε|| = 0

The velocity of growth for an assembly with an arbitrary number of filaments has the expression:

v(F, k0
on) = δ k0

on

N e
− F δ
kB T

1 + (N − 1) e
− F δ
kB T

(3.28)

Case:N = 2, ε|| = 0

For an arbitrary shift valueS, the velocity of growth is

v(F, k0
on, k

0
off ) = δ

k0
on

2
e
− F δ
kB T − k0

off
2

k0
on + k0

off

1 +
k0
on

(
1− e−

F δ
kB T

)
k0
one
− (1−S)F δ

kB T + k0
one
−S F δ
kB T + 2k0

off

 (3.29)

We note that the stall force in this case verifies Eq. (3.24) in the case ofN = 2 andε|| = 0, and
it is independent on the shift parameterS.

Appendix B: Periodicity and Mirror Symmetry in the Velocity-ShiftCharac-
teristics

We analyze the reasons of periodicity and reflection symmetry shown in Fig. 3.7. For the con-
sidered model, the microtubule growth is defined as a Markovian chain and the memory of the
initial condition is lost. We can define, in a more explicit manner, the initial condition by using
Fig. 3.7. As the microtubule seed is fixed and only the wall is moving, we can choose the origin
as the position of the least advanced tip in Fig. 3.7 (positive axis arrow is pointing to right). We
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associate to each filament an indexi running from0, for the least advanced tip, toN − 1, for the
most advanced tip. The tip of the filamenti has the position

l(i) = σi i = 0, 1, 2, . . . , N − 1 (3.30)

The shift S was defined as the distance between the least and the most advanced tips, given that
the microtubule is at initial configuration like the one in Fig. 3.7:

S = (N − 1)σ (3.31)

Due to polymerization and depolymerization processes, at each filamenti there is added or
removed an integer number of subunits,m(i), and the positions of filament tips are now (in δ
units):

l(i) = σi+m(i) for i = 0, 1, 2, . . . , N − 1, and m(i) is an integer (3.32)

If in the Eq. 3.32 we takem(i) = i, i.e. given the initial condition 3.31 at each filament there is
added a number of subunits equal to the filament index, then the new tip positions are given by:

l(i) = (σ + 1)i i = 0, 1, 2, . . . , N − 1 (3.33)

This equation has the same form like Eq. 3.30 and it can be taken as an initial condition as well,
the only difference being that it defines a new shiftS̃:

S̃ = (N − 1)(σ + 1) (3.34)

Given the definition 3.31 for the initial shiftS, one has:

S̃ = S + (N − 1) (3.35)

and from Markov property there is no difference in the velocity of growth if the original configu-
ration is taken as the one withS or S̃:

v(F, S̃) = v(F, S) (3.36)

or
v(F, S + (N − 1)) = v(F, S) (3.37)

The last equation shows the periodicity of the velocity in shift, and the period (inδ units) is given
by Speriod = N − 1.

The reflection symmetry is explained if we consider the same initial condition like 3.30 and we
make few transformations:

• We count the filaments in a reverse orderi→ (N − 1)− i, so the tip positions are expressed
as

l(i) = σ((N − 1)− i) (3.38)

• Translate the coordinate system to right by a distanceσ(N − 1) so that the new tip positions
become

l(i) = −σi (3.39)

• At each filamenti is added a number ofm(i) = i subunits:

l(i) = (−σ + 1)i (3.40)
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m=0
|i− j| 1 2 3 4 5 6 7 8 9 10 11 12
S 0 0 0 0 0 0 0 0 0 0 0 0

m=1
|i− j| 1 2 3 4 5 6 7 8 9 10 11 12
S 12 6 4 3 12/5 2 12/7 3/2 4/3 6/5 12/5 1

m=2
|i− j| 1 2 3 4 5 6 7 8 9 10 11 12
S 24 12 8 6 24/5 4 24/7 3 8/5 12/5 24/5 2

Table 3.3: The magic numbers. These values, see Eq. (3.43), for the lateral offsetS correspond to the local minima in
the velocity of growth, and are independent from the values of the forceF (see Fig. 3.7).

The last equation is similar to Eq. 3.30, and, as an initial condition, it defines a shift˜̃S = (N −
1) + S. Like before, the velocities are identical:

v(F, (N − 1)− S) = v(F, S) (3.41)

Looking at the first interval of the shift, i.e.S ∈ (0, N − 1), the last equation shows the symmetry
axis at the midpoint of the interval.

Appendix C: The Magic Numbers in Velocity-ShiftCharacteristics

Themagic numbersare defined as being those values for the shift, expressed inδ units, for which
the velocity has local minima (see Fig. 3.7). From thevelocity-shiftcharacteristics it can be
guessed that, in the situation when at least two filaments from the same microtubule can be per-
fectly aligned (i.e. the distance between their tips is a multiple of the subunit sizeδ), the growth is
slower and the velocity can drop significantly.

We can derive the special values of the shift by imposing the condition of filaments alignment.
In order to do that, we use the same system of coordinates as in Appendix B and use for the tips
positions the Eq. 3.32. In general, the filamentsi andj are aligned if their tip positions differ by
an integer number times the dimer sizeδ, which is taken as unity for convenience:

l(i)− l(j) = m⇔ |i− j|σ = m (3.42)

Then the shiftS = (N − 1)σ is

S = (N − 1)
m

|i− j|
, 1 ≤ |i− j| ≤ (N − 1), m = integer (3.43)

The numerical values for the shift from the last formula are shown in Table 3.3 for the first three
ordersm = 0, m = 1, m = 2. A direct comparison of these values with the magic numbers from
Fig. 3.7 shows that they are identical to a a very good approximation, at least for the most evident
depths. It can be noticed that the more aligned filaments, the deeper the depth of the velocity from
the velocity-shiftcharacteristics. As an example, the case ofS = 0 corresponds to all filaments
aligned, and the velocity in this case has the lowest values.



Chapter 4

The Lateral Affinity Between Microtubule
Proto-Filaments

4.1 Introduction

We have presented in the last chapter thecollective Brownian ratchetmodel for growing micro-
tubules, which successfully explained the experimentalforce velocitydata. We found that on the
one hand the model can successfully fit the data, but on the other hand leaves considerable ambi-
guity in values of the fitted model parameters. As a consequence, different types of experiments
are needed, like those that involve microtubule dynamic instability, for an independent evaluation
for the values of the same parameters.

Building on our model for the microtubule growth, we present in this chapter a closer analysis of
the influence of the lateral affinity constantε|| on the microtubule end structure. Indeed, if we look
at the computer simulation data for the tip distribution Fig. 3.8 (d) we notice that, in the absence
of the force, there are many filament tips within a range that spans many dimers in length. The
snapshots from the corresponding simulations (see Fig. 4.3) revealed open-sheet like structures
at the microtubule end, which recalls those observed in microtubule cryo-electron micrographs
[31, 5, 10].

In the following sections we exploit the model at hand in order to investigate the behavior of the
microtubule growth in two extremal regimes, defined by weak and strong lateral affinity between
microtubule proto-filaments.

4.2 The Strong Lateral Limit: A Helical Growth Model

4.2.1 The Helical Growth

The introduction of the lateral interaction between filaments is justified by the tip distribution
at zero force. Indeed, in the absence of any force and lateral affinity, Fig. 3.8 (c) shows that the
distribution of tips is totally flat. This suggests that a free microtubule does not exist as an assembly
and something else is needed to keep the tips close together.

When the lateral affinity between filaments is switched on, the filament tips indeed grow close
together. We can see that, for a given force, the interval over which the tips are distributed becomes
smaller and smaller as the lateral affinity constantε|| is set to higher values (compare Fig. 3.8 (c) &
(d)). When the lateral attraction is large enough the filament tips are at the minimal distance from
each other and the microtubule polymerizes in an ordered sequential pattern.
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Figure 4.1: The growth of a microtubule in the regime of strong affinityε||between filaments (helical growth model).
The overall offset between filaments isS = 1.5 δ [4]. A microtubule is a tubular bundle ofN = 13 filaments disposed
around a cylindrical sheet. For a2 − D representation, we unfolded the cylindrical sheet onto the figure plane. We
assign a number for each filament, for identification. The13−th filament is displayed twice in order to show its area of
lateral contact with the first filament. The lateral contact between the1−st and the13−th filaments correspond to the
microtubule seam. For the helical growth regime, we assign forε|| the same value like for any other pair of filaments
with direct lateral contact. We consider the initial configuration of the microtubule as it is displayed by the shaded
subunits. For largeε||, the highest probability rate for polymerization corresponds to the first filament, since the gain
in lateral contact for the incoming subunit is9σ, the highest among all other possibilities. The next filament to grow
is the second, then the third, etc. It is due to this staircase pattern of growing why we call this as the regime of helical
growth. In this regime, the step size isδ∗ = σ. Given the geometry, we have8σ = δ.
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We consider only the case that the overall offset between filaments isS = 1.5 δ. We show in
Fig. 4.1 a microtubule that is composed ofN = 13 filaments. In the case of strong lateral affinity
between filaments the order of growth is the one suggested in the figure. More precisely, after the
polymerization event of a given filament, the most probable filament to polymerize next is its direct
neighbor, being the one with the highest amount of lateral direct contact to be gained, and hence
free energy from lateral bonding to be released. Therefore, subunits are added sequentially to one
filament, then to its neighbor and so on. Given the offset between filaments, the microtubule end
looks like it is growing following a helical pattern. For this reason we call the regime of strong
lateral affinity.

4.2.2 The Helical Growth Criterion

Following Fig. 4.1, and given the offsetS = 1.5 δ, it follows that the step size of growthδ∗ = σ is
given by

σ =
S/δ

N − 1
=

1

8
(4.1)

Given this value, it is useful to divide a subunit into eight equal pieces because there is always an
integer number of such pieces with direct lateral contact to neighboring protofilaments.

At high enough value of contact energy parameterε|| the microtubule is expected to grow in
an ordered fashion. More precisely, for the situation shown in Fig. 4.1 the order the filaments
to polymerize is 1-2-3-...-13-1-2-... etc. In order to evaluate the minimal value ofε||, for which
this ordered growth occurs, we take the filament number nine as an example. If this filament
polymerizes independently (that is, the neighbors 8 and 10 did not polymerize yet) then the rate of
growth at this filament is

kon(independent) = k0
on exp

(
ε||σδ

kB T

)
(4.2)

This is because there is only a contact of lengthσ with the10−th filament. In the case of helical
growth one has to take the contact length with the just polymerized filament 8,i.e.

kon(helical) = k0
on exp

(
8 ε||σδ

kB T

)
(4.3)

The criteria of having a helical growth is derived from the condition of having the last rate the
most dominant one, i.e.kon(helical)� kon(independent) or

exp

(
7ε||σδ

kB T

)
� 1 (4.4)

A value of 10 on lhs in Eq. (4.4) is enough for defining the helical growth regime. At room
temperature,i.e. aboutT = 4.1pNnm, it means that

ε|| ≥ 1.34 pN or ε||δ ≥ 2.63 kB T (4.5)
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4.2.3 The Force-Velocity Relation in the Helical Growth Regime

In the following it is useful to use the notations:

r = exp
(
− Fσδ
kB T

)
u = exp

(
ε||σδ

kB T

)
A =

k0
off/k

0
on

u8

(4.6)

Given these new notations, then the helical growth criteria Eq. (4.4) suggests that the minimal
value foru must be:

u ≥ umin = 1.4 (4.7)

In the Appendix we derive that, in the case of the helical growth regime, theforce-velocityrelation
has the form:

v(F, ε||) = 8σδk0
on

r8 − A13

F(A, u, r)
(4.8)

The exact expression for the factorF(A, u, r) is given in the Appendix. Given the notations Eq.
(4.6), we can easily verify that the stall force, as derived from Eq. (4.8), is exactly the same as
given by Eq. (3.24), which was derived as the most general expression for an arbitrary value ofε||.

We use the full expression for the factorF(A, u, r), and derive theforce-velocityrelation for
the following subregimes.

Case A: No off-rate: k0
off = 0 givesA = 0

v(F, ε||) = 8σδ
k0
onu

9

1 + 4u+ exp(Fδ/8/kB T )(7u+ u2)
(4.9)

Case B: The minimal decay rate: k0
off = 0, u→∞, k0

on → 0, k0
onu

7 → const = B

v(F, ε||) = 8σδB exp(−Fδ/8/kB T ) (4.10)

Case C: The limit of small off-rate or large lateral affinity : A � 1. Keeping the terms for
smallA in the equation Eq. (4.20)

v(F, ε||) =
8σδk0

onu
8 (r8 − A13)

r8(1 + 4u) + r7(7u+ u2) + A(r8(1 + 3u) + 2r7u+ r6(6u+ u2)) +O(A2)
(4.11)

Case D: Strong lateral affinity, strong linear dimer repulsion: u → ∞, A = finite. For
Eq. (4.20) we make an expansion in1/u for F(A, u, r) and keep the smallest order term.

v(F, ε||) = 8σδ
k0
off

A12u

(r8 − A13)(
1−1/A5

1−1/A
+ r

A5

1−(r/A)7

1−r/A

) (4.12)

4.2.4 Force-VelocityRenormalization and Fit Analysis

We consider Eq. (4.8) in order to fit theforce-velocitydata setsS0, S1 andS2 introduced in the
previous chapter. We tried to use the Eq. (4.9-4.12) to see which of the subregimes identified above



4.2 The Strong Lateral Limit: A Helical Growth Model 63

applies. The results suggest that the best fit quality can be obtained in the case of extremely large
parameteru, but finiteA, i.e. the subregimeD.

In the case of subregimeD, and looking at the definitions Eq. (4.6) for the parametersu andA,
we see that the lateral affinityε|| is extremely large, while a finiteA implies that the stall force must
be finite. Another important observation is that, sinceu → ∞ andA = k0

off/k
0
on/u

8 < ∞, we
must havek0

off/k
0
on → ∞. In spite of this perhaps unrealistic feature, we report a good fit quality

given by Eq. (4.12), and it is remarkable thatA is theonly fitting parameter. The reason is that,

the prefactor8σδ
k0
off

A12u
in Eq. (4.12) can be evaluated independently from the value of the velocity

at zero forcev(F = 0, ε||). This is possible because the data offreelygrowing microtubules can be
regarded as statistically independent from the rest.

The positive and negative terms in theforce-velocityexpression from Eq. (4.12) corresponds to
the addition and removal events respectively, and we can write the velocity as

v(F, ε||) = von(F, ε||)− voff (F, ε||) (4.13)

For the last equation we have defined
veffon (F, ε||) = 8σδ

k0
off

A12u
r8(

1−1/A5

1−1/A
+ r
A5

1−(r/A)7

1−r/A

)

veffoff (F, ε||) = 8σδ
k0
off

A12u
A13(

1−1/A5

1−1/A
+ r
A5

1−(r/A)7

1−r/A

)
(4.14)

From these velocities, we can further define theeffective additionandremoval rates, keffon andkeffoff

as 
keffon (F, ε||) = von(F, ε||)/δ

keffoff (F, ε||) = voff (F, ε||)/δ
(4.15)

In Appendix B, we argue that these effective quantities are the experimental observables which
are measured in experiments like [34], for freely growing microtubule,i.e. F = 0 pN , at different
tubulin concentrations. The expressions given by Eq. (4.14) and Eq. (4.15) are introduced as
theoretical definitions on the basis of the model under discussion. Indeed, we generalize the argu-
ments discussed in Appendix B to arbitrary values of the force. However, thephysical sensefor
the effective dissociation velocity at an arbitrary force,veffoff (F ), is given by the experiments which
provide theforce-velocity data from growing microtubules under different buffer conditions,i.e.
different tubulin concentration. It is exactly what we can check on the data setsS0, S1, andS2,
since the values for the fitted parameters are consistent among themselves (Table 4.1).

In Table 4.1 we present the summary of our fit analysis, when Eq. (4.12) was used. We note that
the values that we obtained from the fit for the effective offrates are consistent with other values
from the literature [35, 4], which are obtained from independent measurements. We can compare
these results with the former results based on computer simulations from Table 3.2, and we can
note that we get similar values for the stall force and the fit quality parameterχ2. Finally, the
very low value fork0

on rate as compared tok0
off cannot escape our observation. This result implies

a huge barrier for the end-to-end contact between microtubule subunits. To offset this feature,
our fit suggests instead a huge value for the lateral energy constant, making it possible that the
microtubule assembly nevertheless has a very small effective offratekeffoff .

In order to test the large barrier at the end-to-end contacts between subunits, one interesting
observation is that, after a catastrophe, the proto-filaments peels off during dissasembly, which
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Figure 4.2: The fit of the experimental dataS0, S1,
andS2 using Eq. (4.12). We use the constraint that
the velocity at zero force has fixed value. Therefore,
in making this fit we useA as the only fit parameter.
The results are summarized in Table 4.1.

rather suggests linear attraction instead of repulsion. However, it is the GDP-tubulin which is
disassembling, which is expected to have different biochemical properties from the polymerizing
GTP-tubulin.

4.2.5 The Structure of Microtubule End in the Helical Growth Regime

In the following we continue to explore the consequences of the unexpected features, which arise
from the fit analysis performed in the previous section. In the identified regime, we haveε|| →∞
andk0

off/k
0
on → ∞ with the consequence of subunit addition at the microtubule end in a helical

pattern as described in Fig. 4.1.
We can also consider the influence of a seam that potentially exists between the first and the

13−th filament. The way that we can model this seam is simply to assign the value ofε|| = 0 at this
contact. In this case the polymerization rate of the first filament drops dramatically, and eventually



4.3 The Weak Limit: Developing Open Sheet Structures at Microtubule Ends 65

Set veffon (F = 0) keffon k0
on veffoff (F = 0) keffoff k0

off

(µm/min) (1/min) (1/min) (µm/min) (1/min) (1/min)
S0 1.21 150 1× 10−5 1× 10−6 1.2× 10−4 770
S1 1.88 176 4× 10−5 9× 10−4 0.11 2310
S2 2.36 296 5× 10−5 1× 10−4 1.3× 10−2 2560
Set n Fstall χ2 χ̃2

# pts (pN )
S0 13 7.10 0.12 0.01
S1 6 3.70 0.015 0.003
S2 11 5.10 1.855 0.185

Table 4.1: The results of the fit analysis obtained from the helical growth model described by Eq. (4.12).

the growth of the whole assembly halts. Indeed, in the case of a seam, the polymerization rate for
anyof the filaments is given by Eq. (4.2), which becomes in the notation of Eq. (4.6)

kon(independent) = k0
on u =

k0
off

Au7
→ 0 (4.16)

We obtained the zero limit in the last equation because we consider the case ofA = finite and
k0
off = finite as was suggested by the fit analysis (see also Table 4.1). In summary, this result

means that a microtubule with strong lateral affinity between protofilaments and with an open seam
cannot grow.

This result is of course also contrary to what the experimental evidence suggests. Indeed, the
model that we have just described for a microtubule with an open seam is expected to correspond
to an open sheet as conformational cap. In the case that we have just described, the microtubule
can growonly when the seam is closed. But in this regime the microtubule end is blunt, as we
can also see in Fig. 4.1. This is exactly the reverse of what the evidence suggests, since the
microtubule growing state can be correlated to the open sheet conformational cap, and the non-
growing “intermediate state”, to blunt ends [5].

4.3 The Weak Limit: Developing Open Sheet Structures at Microtubule
Ends

We have seen in the previous chapter, that the Brownian ratchet model can explain theforce-
velocitydata in a very satisfactory way for a very broad range values for the protofilament affinity
constantε||. In the previous section we have seen a similar good quality of fit for the same model in
the extremal case of strong lateral affinity between microtubule protofilaments. However, in spite
of the successful use of asinglefit parameter, there is the unexpected predicted feature of having
extremely strong repulsive patches on the tubulin dimer. We argued that the consequence of this is
that the growing microtubule cannot develop a open sheet cap structure in thegrowingstate.

In the following, using simple computer simulations, we investigate the relationship between
the microtubule cap structure and affinity parameterε|| in the opposite limit of low interaction.
If we look at Fig. 3.8 (c)& (d), we see from the inset that at low force there is a non-trivial
distribution of filament tips at the microtubule end that spans several tens of nm’s, depending on
how strong is the lateral affinityε||.

We define thesheet capstructure at the microtubule end as being that of the microtubule lying
between the protofilament tips of the two filaments with thehighestand thelowestpolymerization
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Figure 4.3: (a) Seamless microtubule; (b) Seamed microtubule. Thesheet lengthis defined as the distance between
the tips of the shortest and the longest filaments. These are snapshots from the computer data for the microtubule sheet
structures, which develop at the end of the assembly. For a fairly weak lateral affinity between protofilaments, the
sheet develops as a long connected structure for seamed microtubules (see (b)). For seamless microtubules the size of
the sheet is significalty lower. Parameters:k0

on = 160min−1, k0
off = 0min−1, ε|| = 0.10 pN ≈ 0.2 kB T/δ, S =

1.5 δ, δ = 8nm.

degree. Then we can define thelengthof this sheet cap as being simply given by the distance
between the most advanced filament tip and the tip of the least polymerized filament.

We considered in our study the possibility of having aseam[4]. In the cartoon Fig. 4.1, the
seam is located at the contact between the filaments# 1 and# 13. In order to study the influence
of the seam, we setε|| = 0 at this protofilament lateral contact.

The snapshots, taken from simulations, show thesheet capas a long connected structure in
the case of a seam and non zero lateral affinity constantε|| (Fig. 4.3 (b)). The sheet cap became
clearly shorter in the case of non-existing seam at the same valueε||. There is also a qualitative
influence of constantε|| value on the physical aspect of thesheet cap. Indeed at very low values,
presumablyε|| → 0 pN , thesheet capbecame anon-connectedgeometrical structure. Indeed, for a
freemicrotubule, the filament tips follow a simple random walk which leaves a “broken” structure
for the microtubule cap.

Fig. 4.3 shows the case ofε|| = 0.10 pN , i.e. ε|| δ ≈ 0.2 kB T . This corresponds to a fairly
small value of the lateral affinity energy along the side of asingledimer compared to the thermal
energy. However, this energy is strong enough to giveintegrity to the sheet cap in the case of a
seam Fig 4.3 (b). In this case we predict a relatively large length for the sheet cap, which spans
several tens of a dimer size. Direct observations confirms the existence of such long structures at
the microtubule end [31, 5, 10]. Note that the least polymerized filament is located at the seam.
Indeed, the probability rates are the lowest for the seam filaments. In the case of no existing seam,
there is no broken symmetry factor and the shortest filament can occupy an arbitrary position inside
the microtubule ( see Fig. 4.3 (a)). In that case, the size of the sheet is dramatically reduced, as we
can see in the constant between Fig. 4.3 (a)& (b).

We plot in Fig. 4.4 (a) the sheet size as a function of the lateral affinity constantε||, for a freely
growing microtubule in both cases of theopenandclosedseam. In both cases, the length of the
sheet is decreasing with the strength of protofilament lateral affinityε||. However, this length is
increasing for more dynamic microtubules,i.e. for higher values ofk0

on or k0
off rates. In Fig. 4.4

(b) we show how the calculated sheet length depends on the off ratek0
off . The computer simulation
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Figure 4.4: Computer data suggest a large end structure (thesheet cap) in the case of seamed microtubule. It is
argued that blunt microtubule ends exist for seamless or less dynamic microtubules. (a) Keeping the probability
rates,k0

on andk0
off as constant, the size of the end structure decreases at larger lateral affinity constantε||. k0

on =
160min−1, k0

off = 0min−1; (b) We obtain larger sheet lengths for more dynamic microtubules, with higherk0
off at

constantk0
on. k0

on = 50min−1, ε|| = 0.30 pN ; Other parametersS = 1.5 δ, δ = 8nm, kB T = 4.1 pN nm

data simply show a strong dependence in the case of seamed microtubule and a weak or almost no
dependence in the case of seamless assembly.

4.4 Conclusions

The compelling features of the strong lateral affinity limit of our theory are the appearance of just
a single fit parameter, and the consistency of the fit results for the three independent sets of data,
especially regarding the result for the stall force, lateral affinity and the values for the effective
rates from Eq. (4.15).

Besides the good fit quality, obtained from this theory, the helical growth regime offers consis-
tent physical reasons in definingeffectiveon- and off-rates,i.e. keffon andkeffoff . The fitted values
for these quantities are in excellent agreement with other experiments. Even more, the effective
rates can be measured in different experiments, like growing free microtubules at different tubulin
concentrations, which gives also an independent evaluation of the fit parameters.

However there is no prediction of an open sheet-like feature at microtubule ends in the strong
lateral affinity regime. This feature, which is clearly observed from cryo-electron microscope
images, is easily reproduced by our growth model in the limit of weak and intermediate lateral
affinity. The microtubule dynamic parameters,i.e. the association and dissociation rates, are the
tuning variables that control the length of the sheet. The evidence [5, 10] suggests sheets of100nm
or more in length. Such a size can be easily reproduced by our model in both cases of seamed and
seamless microtubules (see Fig. 4.4).
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Appendix A: Derivation of the Force-VelocityRelation for Helical Growth
Regime

In this section we consider the helical growth model and derive theforce-velocityrelation Eq. (4.8).
Thestateof a microtubule is defined by its tip distribution. We attempt to analyze and solve the

probability equations in order to derive the velocity of growth at arbitrary force.
In a helical growth there are 13 distinct configurations. We denote each configuration byk, and

the associated probability bypk. In thek configuration all filaments from1 to k (1 ≤ k ≤ 13) have
the same degree of polymerization and for the rest of them the polymerization degree is one less.
It is convenient to make the following notations Eq. (4.6):

The steady equations for the configuration probabilities are (see Fig. 4.1)

p1(k0
onu

8 + k0
off ) = p13k

0
onu

9 + p2k
0
off

p2(k0
onu

8 + k0
off ) = p1k

0
onu

8 + p3k
0
off

p3(k0
onu

8 + k0
off ) = p2k

0
onu

8 + p4k
0
off

p4(k0
onu

8 + k0
off ) = p3k

0
onu

8 + p5k
0
off

p5(k0
onu

8r + k0
off ) = p4k

0
onu

8 + p6k
0
off

p6(k0
onu

8r + k0
off ) = p5k

0
onu

8r + p7k
0
off

p7(k0
onu

8r + k0
off ) = p6k

0
onu

8r + p8k
0
off

p8(k0
onu

8r + k0
off ) = p7k

0
onu

8r + p9k
0
off

p9(k0
onu

8r + k0
off ) = p8k

0
onu

8r + p10k
0
off

p10(k0
onu

8r + k0
off ) = p9k

0
onu

8r + p11k
0
off

p11(k0
onu

8r + k0
off ) = p10k

0
onu

8r + p12k
0
off

p12(k0
onu

7r + k0
off ) = p11k

0
onu

8r + p13k
0
off

(4.17)

This are to be solved together with normalization condition:

13∑
k=1

pk = 1 (4.18)

The velocity is computed as (see Fig. 4.1)

v(F, ε||) = σδ(
11∑
k=5

(pkk
0
onu

8r − pk+1k
0
off ) + p12k

0
onu

7r − p13k
0
off ) (4.19)

Solving the Eq. (4.17) a direct computation of Eq. (2.6) gives:

v(F, ε||) = 8σ δ k0
on

(
r8 − A13

)
/F(A, u, r) (4.20)

A simple check shows that equating to zeror8 − A13 = 0 one has the exact expression for the
stall force Eq. (3.24).
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F(A, u, r) =
(
r8

u9 + r8

u8Q1(1/r) + r7

u7

)
+ A

(
r8

u9 + r8

u8Q2(1/r) + r6

u7

)
+ A2

(
r8

u9 + r8

u8Q3(1/r) + r5

u7

)
+ A3

(
r8

u9 + r8
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u7

)
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(
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)
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(
r7
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(
r6
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u7
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(
r5

u9 + 1
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u7
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(
r4
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u8Q4(r) + 1

u7

)
+ A9

(
r3

u9 + 1
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u7

)
+ A10

(
r2

u9 + 1
u8Q2(r) + 1

u7

)
+ A11

(
r
u9 + 1

u8Q1(r) + 1
u7

)
+ 13A

12

u8

whereQk(x) are the following polynomials

Q1(x) = 7x+ 4

Q2(x) = 6x2 + 2x+ 3

Q3(x) = 5x3 + 2x2 + 2x+ 2

Q4(x) = 4x4 + 2x3 + 2x2 + 2x+ 1

Q5(x) = 3x4 + 2x3 + 2x2 + 2x+ 2

Q6(x) = 2x5 + 2x4 + 2x3 + 2x2 + 2x+ 1 (4.22)

Appendix B: The Effective on- and off- Rates

In this Appendix we try to justify the definitions Eq. (4.15) for theeffective associationanddis-
sociationrates, asphysicalquantities for the helical growth model. For the definitions Eq. (4.14)
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and Eq. (4.15) to be correct, these relations have to comply with the corresponding experimental
observable quantities. The association and dissociation rates were evaluated in the experiments
like Ref. [34] for growing microtubules in buffer conditions at different tubulin concentrations.
Without insisting into much details, we mention that the main argument ruled in these experiments
is that the tubulin association rate scales linearly with the tubulin concentration of the existing pool

k0
on = c αon (4.23)

In the last equation we denoted the tubulin concentration byc, andαon is a proportionality constant,
which is concentration independent. If the microtubule is modeled as a single filaments, then its
growth velocity is in the absence of any force given by

v(F = 0) = δ∗( c αon − k0
off ) (4.24)

As usual, we callδ∗ as theaveragestep size. Since the removal rate is not expected to depend on
tubulin concentration, theoff-rate is evaluated from they− intercept from a plot of the velocity at
different tubulin concentration valuesc.

The microtubules stop growing at a critical value of the concentrationccrt, which if given from
Eq. (4.24) as

ccrt =
k0
off

αon
(4.25)

In the following, we consider the helical model in order to derive the dependency for the velocity
of growth with tubulin concentration atzero force.

In the case ofF = 0, thenr = 1 in the notations of Eq. (4.6), and Eq. (4.8) becomes:

v(F = 0, ε||) = 8σ δ k0
onu

8 1− A
(1− u)2 1−A12

1−A13 + 13u
(4.26)

In the case of helical growth, the criterion Eq. (4.7) predicts a minimal value foru asumin =
1.4. For this value ofu, the denominator in the last expression has simply aweakdependency on
A. Therefore, for minimal values for the lateral affinity, we can approximate the above relation as

v(F = 0, ε||) = 8σ δ k0
onu

8 (1− A)

13u
(4.27)

Now, in analogy with Eq. (4.23) we can introduce aneffectivequantityαeffon as

k0
on u

8 = c αeffon (4.28)

Indeed, the effective polymerization rate is given by both longitudinal and lateral affinity, and this
is supposed to scale linearly with the concentration of tubulin.

Then, Eq. (4.27) becomes

v(F = 0, ε||) =
8σ δ

13u

(
c αeffon − k0

off

)
(4.29)

According to this equation, the microtubule growth stops at a critical tubulin concentration

ccrt =
k0
off

αeffon

(4.30)

We can note the similarity between this critical value and the value suggested by Eq. (4.25). The
only difference is that the effective parameterαeffon incorporates the lateral bonding energy between
the protofilaments.
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Above the critical value given by Eq. (4.30), the expression Eq. (4.29) suggests a perfect
linear dependency for the velocity of growth with the tubulin concentration. This qualitative aspect
is more than sufficient to make possible the definition for theeffectiveassociation-dissociation
velocities for thefreely growing microtubules. Although the equation Eq. (4.27) was derived at
the minimal value for the lateral affinity for which the helical growth is still possible, we confirm
that this equation remains linear above the critical concentration for any other possible subregimes
of the helical growth. Below the critical concentration, it is possible for the velocity to become
slightly non-linear.
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Microtubule Self-Organization





Chapter 5

Microtubule Self-Organization in Higher
Plant Cells

5.1 Introduction

The proper functioning of a living cell depends on the organization of its cytoskeleton. Specific
functions are associated to different cytoskeletal structures, and the complexity of the performed
tasks depends on the various forms in which the cytoskeleton can be organized. In the introduction
of this thesis we mentioned the mitotic spindle as a clear example of an organized microtubule
system that plays a very important role in positioning and segregating the chromosomes during
division. Asters represent a completely different form in which microtubules organize after the
exit of mitosis, in the case of animal cells, and play an important role in generating shape and
rigidity to the cell.

Among the other cytoskeletal components, like actin and the intermediate filaments, the orga-
nization of microtubules involves a phenomenology with its own agenda. The dynamic instability
makes possible that tubulin can be recycled and quickly assembled into microtubules that assume a
completely different organized form [2]. In the case of higher plant cells, microtubules organize in
5 different cytoskeletal forms that show little resemblance to those from animal cells [39, 40, 41].

The various microtubule arrays that organize in higher plant cells are summarized in Fig. 5.1.
In the case of elongating interphase cells, the microtubules appear in the cell cortex as a transversal
array, i.e. perpendicular to the main axis of the cell. Before the onset of mitosis, the widely
dispersed interphase array of microtubules narrows to a tight3 − 4µm wide band, which wraps
on the cortex around the nucleus (seee.g. [42, 43] ). This band is called thepreprophase band
(PPB), since it starts forming in the early prophase cells. When the cell enters mitosis, the nuclear
membrane breaks down at the same time as the PPB. The PPB tubulin is recycled and assembled
into the microtubules that form the mitotic spindle. When the cell exits mitosis, a new and very
important cytoskeletal complex is formed:the phragmoplast. This is a complex array of short and
longitudinal microtubules, which contains also actin, membranous filaments, and vesicles. The
phragmoplast helps in building the separation wall between the daughter cells during a process
which is calledcytokinesis. Finally, cortical microtubules re-appear in the form of a disordered
array of short microtubules in early interphase cells, roughly radiating outward from the nucleus.
During interphase, this random array is replaced by ordered tranversal microtubules.

The biological role of these geometrical arrays is only partially understood. For example, im-
munofluorescence or GFP imaging techniques (e.g. [44, 45, 46]), clearly show that the location
of PPB precisely coincides with that of the new separation wall, which is built during cytokine-
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sis. Different studies show a relation between PPB, the orientation of the mitotic spindle, nuclear
positioning and the cytokinetic apparatus [47, 42, 48, 49]. Studies with selective drug treatment
suggest that the microtubule arrays could in fact play a complementary role together with actin
components to ensure a precise orientation of the division plane [47, 50].

Also, the role played by the interphase microtubule array is not fully elucidated. Thetransverse
array is observed mainly in elongating cells, and hence the belief that this microtubule system
must be correlated with the process of growth. Indeed, the orientation of interphase microtubules
correlates with that of cellulose microfibrils [51, 52]. As the cellulose wall hardens, the turgor
pressure makes possible only a longitudinal growth of the cell. However, there is no convincing
evidence that could support the direct relationship between these two components, and secondly,
the cellulose microfibrils can, in principle, be deposited into the wall by a mechanism that is
independent of microtubules [53, 54, 55, 56].

While the biological role of these microtubule components is under discussion, the underlying
mechanisms that are responsible for the organization of these arrays are even more mysterious.
In order to elucidate what are the possible factors that might be involved, different methods were
used to study the behavior of cells under different conditions. For example, mechanical stress,
auxin, red or blue light make the reorientation of transverse interphase microtubules possible [57,
58, 59, 60, 61]. Drug treatment, like ethylene or abscisic acid, lead to reorientation of interphase
microtubules from transversal to longitudinal [62]. When the cells were treated with microtubule
stabilizing drugs like taxol, the PPB failed to organize properly, and the interphase microtubules
persisted until late prophase [63]. This experiment suggests that dynamic instability of microtubule
is required for PPB formation. This result is consistent with more recent studies that show that
microtubules are becoming more dynamic at the onset of PPB formation [64, 43].

Other studies, carried on mutants like MOR1, suggest the existence of a key biomolecular
component that is responsible for microtubule organization [65]. Particularly, these studies show
that MOR1 cells display short microtubules in a disorganized interphase array, which is similar
to the wilde type cells during their early interphase. We will use later this observation for our
arguments in this chapter.

Besides MOR1, many other microtubule associated proteins (MAPs) were also identified. These
proteins are known to regulate the microtubule dynamics, and therefore, are involved in the organi-
zation of the microtubule cytoskeleton [66]. Among them, the protein class MAP 65 is responsible
for cross linking, and appears to be characteristic to plants [67, 68]. Another example is MAP
60, which promotes the growth and stabilization of neuronal microtubulesin vitro [69]. The pres-
ence of katanin, a microtubule severing protein, suggests that microtubules might be independent
from their nucleation sites, which make for the cytoskeletal network more flexible to organize [40].
There is, however, evidence for mobile nucleation sites [70].

Finally, it order to elucidate which are the most important factors that drive the microtubule
organization, it is necessary to investigate more closely the relationship between microtubules and
actin. For example, in trying to understand the role that actin is playing during the formation of
PPB, root-tip cells of allium were treated with actin depolymerization drug cytochalasin D. In this
case the PPB failed to organize or remained much wider than in control cells [71]. Although the
result of this experiment points to a possible involvement in PPB maturation, the microtubules
kept their transversal alignment even in the absence of actin. However, in a similar experiment,
cytochalasin B was used as acting depolymerizing drug instead of cytochalasin D. In this case, the
treatment showed no influence on the PPB organization, while all the actin was shown to be fully
depolymerized [45]. Although, it can be argued the possible side effects of cytochalasin treatment,
the second experiment strongly suggests that PPB organization is independent of actin.
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a b c

d e f
Figure 5.1: The microtubule cytoskeleton in higher plant cells. a) In interphase cells, the microtubules are organized
transversely on the cortex of the cell. b) The preprophase microtubules organize within a narrow transverse band on the
cortex, around the nucleus (the circle), which is positioned at the mid of the cell. c) The mitotic spindle is not bipolar,
the centrosomes are dispersed, unlike animal cells. d) and e) Cytokinesis. The phragmoplast helps in building the
separation wall between daughter cells, from inside the cell toward the wall. f) Early interphase cell. The microtubules
appear on the cortex as being short and randomly oriented.

In spite of the plethora of information that experiments provide, it remains still a mystery what
might be the precise mechanism that drives the organization of microtubules in higher plant cells.
The complexity of the system is as yet responsible for frustrating us in the understanding of these
processes. The most relevant factor might be hidden by other factors whose role are only comple-
mentary, and their presence is justified only to give accuracy to the processes that are involved.

The aim of the present chapter is to initiate a study based on the most simple physical processes
that might drive a complex phenomenon such as theself-organizationof the cytoskeleton. Our
focus will be on interphase microtubule arrays in higher plant cells. In the following we will
present two different passive factors that might be responsible for the transversal alignment of
microtubules. Modeling the self-organization in such a complex system, like plant cells, has two
main reasons. One of them is programmatic,i.e. we aim to derive a minimal set of conditions
that are relevant to a particular organized system. The second one, as we have seen from the brief
presentation of experiments during this introduction, there is no direct evidence that involves other
components, like actin, in driving the organization of microtubules.

5.2 Interphase Nematic Order Parameter

The most direct and striking observation that we can make about microtubule interphase array
is their parallel alignment. This brings us close to the hypothesis that microtubules can display
in plant cells something similar to a nematic crystalline phase.In vitro experiments could indeed
prove the possibility that microtubules can undergo isotropic-nematic transition, displaying a liquid
crystalline structure [72].

Nematic phase is known as an intermediate liquid-solid phase that appears in systems of rod-like
particles. Today it is widely established that entropy alone can drive a system of hard rods into an
ordered nematic state [73]. Without going into much details, we mention that such a phenomenon
is possible, since an aligned system of hard rods can have higher entropy, and therefore less free
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Figure 5.2: a) Cortical GFP labeled micro-
tubules from BY2 cells (courtesy of Jan Vos,
University of Wageningen). b) Manual track-
ing of microtubules from the image shown in
a). The scale bar (the horizontal thick line)
is 18.3µm. The measured order parameter is
m = 0.53. The tilted line is the nematic direc-
tor. c) Angular distributions of filaments.

energy, if the density of rods is above a critical valueρ > ρnemcr . In fact, the rods avoid jamming
if they become more aligned, which means that they gain more translational degrees of freedom.
As a consequence, theeffectivephase space is larger, and above the critical density, the gain in
translational entropy dominates the loss of orientational entropy. This makes possible of having
higher entropy in the ordered than isotropic state in a system of rigid rods.

The nematic order parameter [75] (or see for example Eq. (6.11)) increases as the density of
rods increases. The corresponding dependency can be calculated with the help of Monte Carlo
simulations [74, 77]. These calculations, which were done for a quasi 2 dimensional system of
hard rods, can be compared directly to the experimental results from bothin vitro and in vivo
systems of microtubules [77].

The microtubule array of interphase cells can be visualized at the single filament level with
confocal imaging techniques [76, 43]. However, most of the time the density of microtubules
is too high to measure their length, since the ends cannot be easily distinguished. The density
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Figure 5.3: Comparison betweenin-vitro (a) andin-vivo (b) data. The density was defined in both cases as the total
microtubule length divided by the field area.

and main angle of microtubules can be measured by direct observation of the cells. With this
we can compare the nematic order parameter of cortical microtubules from different samples that
display different microtubule density. Also, density and order parameter measurements can be
done for microtubules that were let to growin vitro in microfabricated chambers. These chambers
were quasi 2 dimensional confinements in order to reproduce thein vivo conditions of cortical
microtubules. This experiment is described and analyzed in details in the PhD thesis of Marco
Cosentino Lagomarsino [77].

In Fig. 5.3 we plot the nematic order parameter versus the microtubule density for bothin vivo
(Fig. 5.3 (a)) andin vitro (Fig. 5.3 (b)) experiments. Thein vitro data clearly show a correlation
between the density and the order degree, which is a close resemblance from ordinary liquid crys-
tals [74]. On the other hand, the correspondingin vivo data is not convincing enough to derive a
conclusion, and it clearly indicates the need for more data points.

Finally, looking at the microtubule arrays in interphase cells, we cannot avoid the question of
the existence of a symmetry breaking factor that might exist in the case of a hypothetical nematic
transition. Normal cells never display longitudinal microtubules. The interphase microtubules are
transversal in most cases, and sometimes tilted. Even more, a transversal array seems to be an
unfavorable configuration, since microtubules are stiff polymers and we expect them to be bent as
they follow the curvature of the cortex. This brings us to the analysis of the elastic properties of
cortical microtubules in the next sections.

5.3 A Helical Spring Model

Besides entropically driven nematic transitions, elasticity is another interesting candidate for a
mechanism of passive self-organizing semi-flexible polymers. Here we explore what the possible
configurations are of a long confined polymer bundle, if the only ingredient is its elastic bending
energy.

The motivation of this idea is given by images like Fig. 5.4 of a interphase plant cell. It looks
as if long coils of microtubule wrap around the cell in a helical pattern. Very little is known about
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how long microtubules could be in such cells, or what the possible ways are that short microtubules
could form long bundles with the help of cross-linkers. The idea of helical microtubule springs
wrapping around the cell is not new. Different images suggest the same idea independent of cell
type or imaging techniques, like immunolabeling of root tips of Arabidopsis [52] and cortical
parenchyma cells from pea [78], or YFP-CLIP170 and GFP-MAP4 labeling of BY-2 cells [64],
or even electron microscope images. Even more, rotation of a confocal optical series projections
reveals that oblique microtubule orientation is consistent around the circumference of the cell [52].

Figure 5.4: GFP images of BY2 labeled cells. These images show for each interphase cell an apparent helical micro-
tubule coil that wraps around the cell several times.

Following Lloyd et. al [80, 78, 79, 81], a list of arguments can be presented in order to favor
the idea that interphase microtubules may not be simply hoops, but rather long microtubule bun-
dles that circle around the cell more than once. For example, in order to test the integrity of the
microtubule helical coil, Lloyd and Seagull [78] show how ethylene inhibits the elongation of epi-
dermal cells by reorientating microtubules. Thus, the frequency of oblique microtubule orientation
increases, but this transition from transversal alignment appears like the unwinding of compressed
helices rather than depolymerization followed by repolymerization of microtubules in a different
configuration. However, this study does not mention explicitly that the rate of the pitch change of
the helix is the same along the whole range of the length of the cell. The presented images clearly
show a constant helical pitch, no matter if the array was tilted or transversal.

5.4 Elastic properties of flexible chains in confined geometry

In the previous section we showed some evidence of existing long microtubules or microtubule
bundles in interphase plant cells. The evidence is not very strong, however, as it remains an ex-
perimental challenge to measure the length distribution of microtubules in living plant cells. In
this section we are going to test the logical implications of long semi-flexible polymer bundle in a
confined cylindrical geometry.

We consider a long inextensible string, which is confined on the 2D surface of a cylinder of
radiusr. We aim to derive the shape equation of this string. The way we derive the equation is to
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minimize the elastic energy stored in this string:

W =
E I

2

∫
ds

1

R2
(5.1)

whereE I is the bending rigidity andR is the radius of curvature, which is given by:

1

R2
=

(
dt

ds

)2

Using cylindrical coordinates, we denote the unit vectors byêr, êφ, êz. Since the string is
wrapping up around a cylinder (r = const), the vector element becomes:

dr = êφ r dφ+ êz dz (5.2)

The tangentt = dr/ds is then
t = êφ r φ̇+ êz ż

Because
d

d s
êφ = −êrφ̇

it follows then:
ṫ = −êr rφ̇

2 + êφ rφ̈+ êz z̈

We use in addition the hypothesis that the string is inextensible, i.e.,

r2φ̇2 + ż2 = 1

From this expression,̇z is substituted in the expression forṫ, and finally, the radius of curvature is
given by

1

R2
= r2φ̇4 +

r2φ̈2

1− r2φ̇2
(5.3)

We use this last equation for the expression of the elastic energy that is stored in the string. If we
introduce the angleγ(s) ascos γ(s) = r φ̇, the the radius of curvature becomes:

1

R(s)2
=

cos4 γ(s)

r2
+ γ̇2 (5.4)

From the definition of the introduced angle, one can identifyγ(s) as being the angle between the
unit vectorst and êφ. The string equation that we have to derive is in fact for the functionγ(s).
Indeed, the cylindrical coordinates are given from solving the equations:

rφ̇ = cos γ(s)

ż = sin γ(s) (5.5)

Suppose that the ends of the string are fixed (by some forces that acts on the string), we derive
the string equation by minimizing the elastic energyW :

δW = 0 (5.6)

From this ”minimal action” principle we derive theLagrangeequation:

γ̈(s) + 2 cos3 γ(s) sin γ(s) = 0 (5.7)

From this equation we may derive afirst integral if we multiply the equation bẏγ(s):

γ̇2 − cos4 γ(s)

r2
= A (5.8)

whereA is a constant which is fixed by the end conditions of the string.
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Figure 5.5: Cortical microtubules in cylindrical cells

5.4.1 Example: A long string with one end free and the other clamped

In the next step we identify the caseA = 0 as corresponding to the case when one end of the string
is free. Indeed, for a string long enough,γ(s) → π/2 andγ̇(s) → 0 , ass → ∞, and from this it
followsA = 0. If we setγ(0) = 0, i.e. at its seed the string is transversal to the cylinder axis, then,
from Eq. [5.8] we derive as initial conditioṅγ (0) = 1. Therefore, for long strings the equation
Eq. [5.8] becomes:

γ̇ ≈ cos2 γ

r
(5.9)

We rewrite that last equation as:
d γ

cos2 γ
≈ d s

r
(5.10)

After integration we get:

tan γ (s) ≈ s

s
(5.11)

Finally:

γ (s) ≈ arctan
s

r
(5.12)

We introduce this solution in the equation for the cylindrical coordinates Eq. [5.5]:
φ̇ ≈ 1

r
1√

1+(s/r)2

ż ≈ s
r

1√
1+(s/r)2

(5.13)

After the integration we obtain the solution:
φ (s) ≈ arcsinh s

r

z (s) ≈ r
(√

1 + (s/r)2 − 1
) (5.14)
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(a) A < 0 (b) A > 0

(c)

Figure 5.6: (a) and (b) Two
examples of numerical so-
lutions of the equation Eq.
[5.8]. (c) A long helical mi-
crotubule bundle in cylindri-
cal cells.

According to this solution, we show in Fig. 5.5 the organization of microtubules on the cortex
of a cylindrical cell. It is assumed that the conformations are only due to bending elasticity and the
confining forces1. The seeds of microtubules are fixed and the initial direction of growth at the
seed is transversal for all microtubules.

5.5 A Confined Elastic String

In the following we investigate two different cylindrical geometries: a cylinder capped by two
planes and a spherocylinder.

5.5.1 Plane Capped Cylinder

We consider a cylinder limited by two planes at its ends. We can make a comparison between two
possible descriptions: one is the solution of the Lagrange equation (see Eq. [5.7]) for a bundle
with bothends being clamped, and the other is a helical bundle, which is described by the equation
γ = const. The two possible configurations are shown in Fig. 5.7 (a) & (b). Given the distance
Zm between the two limiting planes we plotted the ratio of the elastic energies as a function of
Zm. We can see in the figure Fig. 5.7 (c) that the helical configuration is not favored. since the

1The confining forces which are normal to the cell wall,i.e., their direction is radial
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elastic energy which is stored in it is larger for the same confinement height, which is the distance
between the two limiting planes.
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Figure 5.7: a) Helical bundle: a case of torque free ends. b) The solution of Lagrange equation in the case of applied
torques at both ends. The solution depicted here corresponds to zero confinement force,i.e there is no confining force
acting from the planes. c) Energy ratio between cases b) and a)vs the confinement heightZm. It appears that the
energy of the helical coil is always larger than in the case of the coil with clamped ends, for the same confinement
height. This comparison suggests that the helical solution is not stable.

5.5.2 Spherocylinder

We consider the spherocylinder as being another interesting confined geometry. Indeed, the plane
capped cylinder may be regarded as a rough approximation, since the ends of a real cell are round.
The analysis of Lagrange equation is summarized in Fig. 5.8. The bundle is clamped transversally
at one end, while the other is free. The round ends of the chamber allow the bundle to slip longi-
tudinally around the cell. We regard this geometry as being more realistic, and since the bundle
quickly wraps around the cell in a longitudinal way and not transversally, we have to suppose that
some more additional forces might be present. At the origin of these external forces could be the
cross linkers that exists between microtubules themselves, or between microtubules and plasma
membrane. Therefore, we derive in the next section the equation of a bundle under the action of a
external force. This case resembles closely thein vitro observations of microtubules in a elongated
box [77].

5.5.3 Elastic string under the action of an external force

Suppose that one end of the string is fixed at its seed and a point forceF is acting upon the other
end. We consider, for simplicity, that this force is parallel to the cylinder axis,F || êz. If the
z−coordinate of this string end is displaced by an amountδ z, then the work done by the force,
F δ z, corresponds to a variationδ W of the elastic energy which is stored in the string:

δ W = F δ z (5.15)

From this equation we obtain:
δ (W − F z) = 0 (5.16)

This means that theactionthat needs to be minimal is now:

F [γ] = W [γ]− F z[γ] (5.17)
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Figure 5.8: We consider the spherocylinder as the confinement chamber. If the polymer bundle has one end transver-
sally clamped, and the other free, then in its optimal configuration the bundle assumes a rather longitudinal arrange-
ment.

From the equation Eq. [5.5], we have for thez−coordinate:

z[γ] =

∫ L

0

ds sin γ (s) (5.18)

It follows:

F [γ] =

∫ L

0

ds

(
k

2

(
γ̇2 +

cos4 γ (s)

r2

)
− F sin γ (s)

)
(5.19)

We denoted the bending rigidity byk in the last equation.
From theminimal action principle, δF = 0, we have theLagrange equation:

γ̈ +
2 cos3 γ sin γ

r2
+
F

k
cos γ = 0 (5.20)

If there is no torque applied at the end of the bundle,i.e. γ̇(0) = γ̇(L) = 0, the solution of the
last equation is in fact a helix

γ(s) = γ0 = const (5.21)

and the confinement force is:

F = −2 k

r2
cos2 γ0 sin γ0 (5.22)

We can estimate the value of this confinement force if we know that the radius of the cell is
r = 5µm, andk = lp kB T , where the persistence length islp = 6mm, and the temperature is
kB T = 4.1 pN nm

F ≈ 1pN (5.23)

This force is very low, and it is closed in value to the forces that are generated by molecular motors
[102]. However, when microtubules are bundled, the bending rigidityE I is expected to be higher,
and it depends on how many microtubules are in the bundles. From the available experiments, this
is hard to evaluate, and therefore we cannot know the real value of the confining force.
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Figure 5.9: PPB formation. A hypothetical protein is isotropically released by the nucleus. However, due to the
geometry, the density of this protein is not constant along the cell cortex, and it can be fairly approximated by a
Gaussian. In the model that we propose, we assume that this protein is a microtubule growth promoting factor. Since
its density is higher near the nucleus and less near the edges of the cell, we expect that microtubules tend to polymerize
on the cortex only close to the nucleus.

5.6 Discussion and Conclusion

In the present chapter we have explored the possibility of having passive ingredients as driving
factors in organizing microtubules in interphase higher plant cells. Physical modeling can help as
a complementary tools, besides biomolecular methods, in understanding the complexity of such
systems.

We have presented two main possible passive factors. One is a isotropic-nematic like transition
in a system of long and stiff polymers, like microtubules. The other, is the bending elasticity of
long polymers, since the internal elastic stress, which develops in confined polymer, can drive the
system in a particular arrangement.

The second possibility is more promising than the first one from at least two reasons. The first
reason is the need a symmetry breaking factor that explains the transversal alignment of micro-
tubules in the nematic phase. The second reason comes from the fact that the transversal alignment
corresponds to an elastic unfavorable configuration.

Simple arguments from the elasticity theory show that a transversal alignment of microtubules
in cylindrical geometries is possible if a) there is a longitudinal confinement force, b) the ends of
the polymer are torque free, and finally c) the polymer must be very long. For cells with a diameter
of D = 10µm, without bundling we need microtubules with length of more than100µm in order
to wrap around the cell a couple of times. There is little evidence of such long microtubules for
in vivo conditions, and neitherin vitro. We consider this as the most unappealing feature of the
helical coil model for interphase microtubules. However, MAP65 proteins, which were isolated
from carrot cells, proved their ability to bundle neuronal microtubules [82]. This leaves open the
possibility of long coiling bundles composed of short microtubules that form the elastic coil in
interphase cells.

Finally, we mention that in order to realize what are other possible organizing factors for inter-
phase microtubules, a close investigation of the relationship between interphase and preprophase
microtubules could be helpful. Indeed, we could ask if the transversal aligning factor could be the
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same in these two cytoskeletal arrays. The quest for PPB formation is twofold: what drives the
dynamics of PPB narrowing, and what keeps the microtubules as transversely aligned during PPB
formation? One way to address these questions is to observe that recent studies provided solid
evidence that just before the formation of PPB, microtubules become more dynamic [64, 43]. Here
it is worth to mention thesearch-and-capturemodel that is proposed by Voset. al. [43]. This
model assumes a combination between the increased dynamic instability of microtubules outside
PPB and their bundling inside PPB. To fortify the arguments of these authors, we can speculate the
existence of a yet undetermined biochemical agent, like a MAP, which is released isotropically by
the nucleus. This protein is deposited on the cell cortex and acts as a microtubule growth promot-
ing factor. However the density of this protein along the cortex is not constant from geometrical
reasons (see Fig. 5.9), and is maximal nearby the nucleus. The microtubule density becomes
higher where this protein is more abundant. There are analogies between this model and other
more studied systems, like fission yeast [28, 6]. However we leave open the questions about the
time dynamics of PPB, or which are the alignment factors for microtubules inside PPB.

So far, we have investigated what are the possible passive ingredients that help in organizing
microtubules in plant cells. In the next incoming chapters, we change this perspective in the sense
that these could be dissipative far from equilibrium structures, and their organization is driven by
active ingredients like molecular motors.
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Chapter 6

Generic Aspects of Microtubule
Self-Organization

6.1 Introduction

In the previous chapter we tried to develop a model of microtubule self-organization in higher plant
cells, which was solely based on passive ingredients. We speculated that the elastic properties of
long microtubule bundles could explain the patterns on a large length scale, comparable to the
size of a single cell. For the remainder of this thesis we will change this perspective by trying to
understand howactive ingredients could play a role in generating similar patterns like those that
are observed in plant cells.

Motor proteins are ubiquitous in the living cell.In-vitro experiments [83, 84, 85, 86, 87,
88] prove that motor proteins are able to actively cross link filaments and thus make the self-
organization of the cytoskeleton possible. The understanding of the involved dynamics can be
explored with the help of computer modeling and simulations [89], in which the formation of var-
ious complexes like asters, vortices, or even spindles was demonstrated. There are also examples
of one-dimensional analytic models that are able to predict the property of filamentous bundles
to contract [90, 91, 92, 93]. These type of models are relevant in the mechanics of muscle con-
traction, or cleavage furrow formation, which separates the two daughter cells after division. Two
dimensional models are developed as based on macroscopic equations that couples the diffusion of
motors with the motion of the filaments [94, 95, 96]. Based on computer simulations, these models
predict complex patterns such as asters or vortices. A recent generic approach for active viscoelas-
tic materials shows the appearance of rotating spirals, as some particular topological defects in
active gels [97]. These are particular dissipative dynamic structures that could play an important
role for fragments of fish keratocytes, which move spontaneously when their symmetry is broken
by a mechanical action.

However, the self-organization process is quite complex, given the large number of factors that
may be involved, like types of motors, the specific affinity between motors and filaments, motor
activity regulatory factors, flexibility of filaments, their mobility and viscous drag in the cytoplasm,
steric exclusion at high density, hydrodynamic effects etc. Hence it is not always possible to fully
understand the interplay between various factors and the patterns that emerge when modeling is
solely based on experiments or computer simulations. In the case of computer simulations, the
interesting regions in the phase space must be guessed, and it might even happen that some of
them are overlooked. Of course, one cannot expect an analytical theory to include all the possible
factors to a full extent. However, a theoretical method can help to derive relationships between
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some of the factors that are considered relevant. Moreover, analytical relationships can help in
guiding toward interesting regions of a big phase space in a more systematic and efficient manner.
This argument justifies the use of analytical methods as complementary tools for understanding
complex phenomena.

In this chapter we will use symmetry arguments in order to derive generic evolution equations
of filamentous systems. Based on tensorial analysis, we include in the evolution equations all
the possible contributions that are allowed by symmetry. Although the microscopic origins of
the symmetric terms are undetermined in thistop-down approach, the method can potentially
reproduce all the possible topologies for pattern formation and also the associated tension map,
which shows how motion is generated in these states. The results can be compared qualitatively to
examples from biological systems, and a pattern of interest, like the preprophase band, can help in
tracking down a particular region in the phase space where its formation is possible. In this way it
is possible to derive a minimal set of conditions for a particular phenomenology.

We try to elucidate and demonstrate this method in the case of microtubule self-organization
in higher plant cells. This particular system brings a number of new restrictions, which besides
symmetry, help in reducing the mathematical complexity of our analysis.

6.2 Mean Field Theory

6.2.1 Hypotheses

In the case of self-organizing active filaments, the emerging patterns correspond to a scale which
is, in general, larger than the size of a single filament. This means that there exists amacroscopic
length scale which is characteristic for the dynamics of our system. In a macroscopic description
like the one that we want to follow, we neglect the thermal fluctuations and consider only a reduced
number of degrees of freedom, which are expressed aslocal averaged fields. Thecontinuityof the
mean fields is a feature that results after smoothing out the small scale fluctuations. This means
that there is a lower limit on the length scale,i.e. a cutoff l0, which is given by the size of a single
filament. Indeed, this is the length scale on which individual filaments can be distinguished and
fluctuations cannot be ignored.

When we come to characterize the state of a filamentous system, the densityρ(r, t) is the first
important quantity. Filaments are regarded as small and rigid elongated particles. When a motor
protein walks on a filament, it has to make a difference between the two ends of it, and therefore a
symmetry breaking factor must be involved to guide the motor in either direction. This symmetry
breaking factor is intrinsically related to the internal structure of the filament, which defines its
polarization. Indeed, microtubules and actin filamements are known to be polar assemblies. When
we average the polarization of the individual filamentsû, the result is the macroscopic polarization
t(r, t):

〈û〉 = t(r, t) (6.1)

In the last relation, by〈·〉 we mean both a thermal and local average of all the filaments inside a
box that is centered inr and having the sidelength equal tol0. However, if we want to charac-
terize the degree of ordering in the system, then polarization alone is not a sufficient choice. For
example, filaments could be arranged in an anti-parallel fashion, which gives no macroscopic po-
larizationt = 0. This problem is avoided by introducing thenematic orderparameter [75] (see
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also Appendix A of Chapter 7):

Q
(2)

=

〈
û û− I

d

(d)
〉

(6.2)

This is a symmetric and traceless tensor. The parameterd is the number of dimensions, it refers to
either2D or 3D case, andI(d) is the identity matrix of rankd.

It is precisely the case of zero macroscopic polarizationt = 0 that we want to study. One
reason for this choice comes directly from the system on which we want to apply the method
that we develop here. Indeed, there is evidence that microtubules have anti-parallel orientations in
higher plant cells [70]. Another reason is that we want to describe the evolution of the macroscopic
state by studying how pattern formation may result from a direct coupling between density and the
nematic order parameter, without the emergence of polarization. This is a special issue, which
it can be also addressed by making reference to an explicit microscopic model. For example,
we can argue that there is no symmetry breaking factor that may be responsible for a non-zero
macroscopic polarization in the case of equal numbers of two kinds of motors, which walk on
microtubules toward their plus and minus ends respectively.

6.2.2 General Equations

We consider that the densityρ(r, t) and the nematic order parameterQ
(2)

(r, t) give a satisfactory
description for the macroscopic state of active filaments. Since we do not study the effect of the
microtubule dynamics, we disregard both the nucleation of microtubules and their disappearance
due to dynamic instability. In this case we write down the conservation law for the total number of
filaments in the system, which is in fact the continuity equation for the density:

∂t ρ+∇ · J = 0 (6.3)

In writing this conservation law, we neglect the nucleation of filaments and the dynamic instability
that could happen in the case of microtubules. In the case of preprophase band formation, there is
evidence that the amount of polymerized tubulin is constant until late preprophase [43].

The second equation is for the nematic order parameter. In our generic description we do not
have a continuity law, like in the case of filament density. Indeed, the order in the system is

generatedduring the process of self-organization, and the equation forQ
(2)

can be written in the
most general form as:

∂t Q
(2)

= W(2)
(
ρ, Q

(2)
)

(6.4)

The last equation implies that the tensorW(2)
(
ρ, Q

(2)
)

must fulfill the same properties likeQ
(2)

,

i.e. it is symmetric and traceless: W
(2)
αβ = W

(2)
β α

Tr W(2) = W
(2)
αα = 0

(6.5)

In the next step we develop in a more explicit form the density and the order parameter equa-
tions, Eq. (6.3) and Eq. (6.4). Let us firstly have a look at the density equation. The gradients in
the stress tensorσ(2) are the driving force for generating currents in our active gel system:

J = η−1∇ · σ(2) (6.6)
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Now, we can write the stress tensorσ(2) as a Taylor expansion in the fields and their gradients
around some reference state. For the purpose of this thesis, the reference state is considered to
be the homogeneous isotropic state. Based on tensorial analysis, only the following combinations
between the fields and their derivatives are possible:

−η−1 σ(2) = I(2) (a1 ρ+ a2 ∆ ρ) + a3∇∇ ρ

+ a4 I(2) ρ2 + a5∇ ρ∇ ρ+ a6 I(2) ρ∆ ρ+ · · · (6.7)

+ b1 Q
(2)

+ b2 I(2)∇∇ : Q
(2)

+ b3 I(2)Q
(2)

: Q
(2)

+ · · ·+ c1 ρQ
(2)

+ · · ·

Above, the dots mean higher order derivatives and higher order non-linear terms. The reason that
we do not consider higher order derivatives is consistent with the coarse graining procedure of our
approach, in the sense that only the large length scales are relevant to the dynamics of our system.

We also write a similar expression for the tensorW(2). In this case we have to remember that
this tensor is symmetric and traceless, as we can see from Eq. (6.5).

W(2) = d1 Q
(2)

+ d2 ∆ Q
(2)

+ d3 ∆∆ Q
(2)

+ d4 Q
(2)

Q
(2)

: Q
(2)

+ · · ·

+ f1

(
∇∇ρ− I

d

(d)

∆ρ

)
+ f2

(
∇ρ∇ρ− I

d

(d)

(∇ρ)2

)
+ · · · (6.8)

+ g1 ρQ
(2)

+ g2 ρ∆ Q
(2)

+ · · ·

Now, we can express the currentJ with the help of Eq. (6.6) and Eq. (6.7), and the result can
be used for the density equation Eq. (6.3). Similarly, we introduce the general expression Eq. (6.8)
in the order parameter equation Eq. (6.4). In summary we have the following results:



∂tρ = ∆ (a1 ρ+ a2 ∆ ρ) + a3 ∆∆ ρ

+ a4 ∆ ρ2 + a5∇∇ : (∇ ρ∇ ρ) + a6 ∆ ( ρ∆ρ) + · · ·

+ b1∇∇ : Q
(2)

+ b2 ∆∇∇ : Q
(2)

+ b3 ∆
(
Q

(2)
: Q

(2)
)

+ · · ·

+ c1∇∇ :
(
ρQ

(2)
)

+ · · ·

∂tQ
(2)

= d1 Q
(2)

+ d2 ∆ Q
(2)

+ d3 ∆∆ Q
(2)

+ d4 Q
(2)

Q
(2)

: Q
(2)

+ · · ·

+ f1

(
∇∇ρ− I

d

(d)
∆ρ
)

+ f2

(
∇ρ∇ρ− I

d

(d)
(∇ρ)2

)
+ · · ·

+ g1 ρQ
(2)

+ g2 ρ∆ Q
(2)

+ · · ·

(6.9)

We can see that the form of the above equations is invariant under rotations, and we stress that
this symmetry requirement was the main principle that we used in their derivation.
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6.2.3 Geometrical Constraints and Boundary Conditions

A 2D System

We proceed now to explore possible predictions of the equations Eq. (6.9), by choosing a particular
geometry which is close to the case of real plant cells. The cortical arrangement of microtubules
in plant cells suggests that the choice at hand is the case of a 2-dimensional system that lies on a
cylindrical sheet (see Fig. 6.1).

In the 2D case, the order parameterQ
(2)

is a square matrix of rank 2 of the following form:

Q
(2)

=

 q11 q12

q12 −q11

 =
1

2

 〈cos (2φ)〉 〈sin (2φ)〉

〈sin (2φ)〉 − 〈cos (2φ)〉

 (6.10)

whereφ is the angle between the individual filament polarizationû and the main cylinder axiŝex,
i.e. cos φ = û · êx (Fig. 6.1).

Figure 6.1: We consider the system of filaments on a 2D cylindrical sheet. This particular system closely resembles
the case of cortical arrangement of microtubules in higher plant cells. In the natural case of a plant cell, the cylinder
caps are closed and we imposefixed boundaryconditions in the sense that we have no particle flux at the cylinder
ends. However, we argue in this chapter thatperiodic boundaryconditions are mathematically easier but still capture
the relevant physical aspects of the system.

From this matrix we can derive two parameters:
S = 2λ = 2

√
q2

11 + q2
12

tan φ̃ = λ−q11

q12

(6.11)

The parameterS is a scalar and is commonly referred to as the order parameter. This parameter is
zero for fully disordered systems and unity for perfectly aligned systems, and therefore it measures
the degree of alignment. The angleφ̃ is the orientation angle of the nematic director. Its value
is zero for alignment along thex− axis, andπ/2 if the alignment is along they− axis. For both
horizontal and transverse alignment, we haveq12 = 0, and one can show that the criterion for a
specific alignment direction is the sign ofq11. Now, if we expand Eq. (6.11) up to the second order
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in q12 we get for the orientation anglẽφ:

tan φ̃ =

√
q2

11 + q2
12 − q11

q12

=
|q11|

(
1 + 1

2

q2
12

q2
11

)
− q11

q12

=


q12

2 q11
→ 0 if q11 > 0

2 |q11|
q12
→∞ if q11 < 0

(6.12)

For the 2D system, which we are going to consider from now on, we have to impose boundary
conditions in order to solve the system of coupled equations Eq. (6.9).

6.2.4 Evolution Equations

Given the cylindrical geometry of our system, we proceed in making one more simplification for
the equations Eq. (6.9). More precisely, we are going to neglect the azimuthal dependency in the
fields, and consider only the dependency along thex− axis. We can justify this simplification in
two ways. First, if we look back at our model system,i.e. the plant cell, we notice the azimuthal
symmetry for the cortical microtubules, both in the interphase arrangement and in the preprophase
band. Thus, it is an obvious choice to use it as an ansatz and search for axially symmetric solutions.
A second way to discard the azimuthal dependency in the fields is to introduce anew kindof
average over the rotationally invariant equations Eq. (6.9),i.e. we average the fields over their
angular variable, around the cylinder axis. Also we call this procedure projection onto thex− axis
(see Fig. 6.1). Then, the only dependency that is left in the system is thex-coordinate along the
cylinder symmetry axis. In this case we rewrite all the equations from Eq. (6.9) by removing all
the derivatives∂y:



∂t ρ = ∂2
x (a1 ρ+ a2 ∂

2
x ρ) + a3 ∂

4
x ρ

+ a4 ∂
2
x ρ

2 + a5 ∂
2
x (∂x ρ)2 + a6 ∂

2
x ( ρ ∂2

xρ) + · · ·

+ b1 ∂
2
x q11 + b2 ∂

4
x q11 + 2 b3 ∂

2
x (q2

11 + q2
22) + · · ·+ c1 ∂

2
x (ρ q11) + · · ·

∂t q11 = d1 q11 + d2 ∂
2
x q11 + d3 ∂

4
x q11 + 2 d4 q11 (q2

11 + q2
22) + · · ·

+ 1
2
f1 ∂

2
xρ+ 1

2
f2(∂xρ)2 + · · ·+ g1 ρ q11 + g2 ρ ∂

2
x q11 + · · ·

∂t q12 = d1 q12 + d2 ∂
2
x q12 + d3 ∂

4
x q12 + d4 q12 (q2

11 + q2
22) + · · ·

+ g1 ρ q12 + g2 ρ ∂
2
x q12 + · · ·

(6.13)
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Periodic Boundary Conditions

As a first step, we will develop our analysis in the case ofperiodic boundary conditions. This is
equivalent to saying that the cylinder has its ends connected, as in the case of a torus (see Fig. 6.1).
If we choosêex as the cylinder axis, and the length of the cylinder isL, then we can write the
periodic boundary conditions as:

ρ|x=0 = ρ|x=L

Q
(2)
∣∣∣
x=0

= Q
(2)
∣∣∣
x=L

Jx|x=0 = Jx|x=L

(6.14)

6.3 Linear Stability Analysis

The homogeneous isotropic state is a stationary solution of the general equations Eq. (6.9), with the
periodic boundary conditions Eq. (6.14).The same holds true for the axially symmetric equations
Eq. (6.13). The first step in understanding the pattern formation out of a completely disordered
state consists in performing the linear stability analysis [98]. With this procedure we investigate the
stability of a certain state, which in our case is the disordered state, by considering an infinitesimal
deviation from that state and analyzing if the dynamics drives the system further away or brings it
back to its original state.

Let us consider an arbitrary deviation from the homogeneous isotropic state

ρ = ρ0 + δρ (6.15)

qαβ = δqαβ (6.16)

Then, we rewrite again the equations Eq.(6.13) by keeping only the linear contribution:

∂t


δρ

δq11

δq12

 =


D∂2

x + P ∂4
x F1 ∂

2
x 0

F2 ∂
2
x E +G∂2

x +Q∂4
x 0

0 0 E +G∂2
x +R∂4

x




δρ

δq11

δq12

 (6.17)

The expression of the linearized current is:

Jx = −
(
D∂x δρ+ F1 ∂x δq11 + P ∂3

x δρ
)

(6.18)

We have introduced a new set of coefficient in the linear equations Eq. (6.17), and we can
express them in terms of the old coefficients as:

D = a1 + 2ρ0 a4, F1 = b1 + c1 ρ0, F2 =
1

2
f1 (6.19)

E = d1 + g1 ρ0, G = d2 + g2 ρ0 (6.20)

We call the coefficientD an effectivedifussion coefficient since its contribution in the linear
equations can be formally written as

∂t δρ ≈ D∂2
x δρ (6.21)
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if all the other coefficients are ignored. Naturally, in the case of pure diffusion, this coefficient is
positiveD > 0. However, when active elements are present in the system this coefficient can be
negative,D < 0, and the homogeneous state is unstable.

In order to identify a possible interpretation for the coefficientsE andG we can write for both
componentsq11 andq12

∂tQ
(2) ≈

(
E +G∇2

)
Q

(2)
(6.22)

We will see in Chapter 7 thatE is in fact a rotational diffusionconstant. NormallyE < 0,
and a change in its sign leads to theisotropic-nematictransition (see also Ref. [99, 100]). The
coefficientG gives the length scale that corresponds to the change of the nematic order parameter,
and is interpreted as an elastic constant or nematic rigidity [99, 100].

In the linear set of equations Eq. (6.17), there are also fourth order derivatives in the field
perturbations present, which correspond to the coefficientsP, Q andR. Since our purpose is to
identify aminimalset of conditions that may correspond to a real system with a non-trivial phase
diagram, the use of these terms may look like a complication. However, in the next section we
will derive the phase diagram explicitly, and we will see that the case of negative values for these
coefficients is sufficient to avoid small length scale instabilities. This is used as a consistency
condition, because there is a natural cutoffl0 on the small length scale, due to the coarse graining.
Even more, below this scale the thermal fluctuations cannot be ignored and therefore the mean
field theory breaks down. For convenience, we make the additional assumption that the absolute
values for these coefficients are arbitrary small.

6.3.1 Periodic Boundary Conditions

In the case of periodic boundary conditions, we expand the fields as a Fouriercosine series.
δρ(x, t)

δq11(x, t)

δq12(x, t)

 =
∑
k

cos (k x)


δρ̃(k, t)

δq̃11(k, t)

δq̃12(k, t)

 (6.23)

Then the re-write the equations Eq. (6.17) for the Fourier components:

∂t


δρ̃

δq̃11

δq̃12

 =


−Dk2 + P k4 −F1 k

2 0

−F2 k
2 E −Gk2 +Qk4 0

0 0 E −Gk2 +Rk4




δρ̃

δq̃11

δq̃12

 (6.24)

The periodic boundary conditions are satisfied for

k =
π n

L
, n = 0, ±1, ±2, · · · (6.25)

If we apply the method of variable separation, then we can derive
δρ̃(k, t)

δq̃11(k, t)

δq̃12(k, t)

 = eλ t


δρ̃0(k)

δq̃0
11(k)

δq̃0
12(k)

 (6.26)
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and the equations Eq. (6.24) become an eigenvalue problem:

λ


δρ̃0(k)

δq̃0
11(k)

δq̃0
12(k)

 =


−Dk2 + P k4 −F1 k

2 0

−F2 k
2 E −Gk2 +Qk4 0

0 0 E −Gk2 +Rk4




δρ̃0(k)

δq̃0
11(k)

δq̃0
12(k)


(6.27)

Considering as initial condition att = 0 the presence of some arbitrary field perturbations(
δρ̃0(k), δq̃0

11(k), δq̃0
12(k)

)
we can see from Eq. (6.26) that these perturbations will grow beyond the linear regime when the
real part of any eigenvalueλ is positive. In other words, the condition for having a linearly unstable
isotropic and homogeneous state is

Re λ > 0 (6.28)

We now derive the expressions for the eigenvalues by solving the characteristic equation from
Eq. (6.27):

λ1,2 =
1

2

(
E − (D +G)k2±

√
(E + (D −G)k2)2 + 4F1F2k4

)
+O(P, Q) (6.29)

λ3 = E −Gk2 +Rk4 (6.30)

We have expressed the first two eigenvalues in the limit of small parametersP andQ.
Before we proceed further in deriving the phase diagram, we have to observe from the equations

Eq. (6.24) or Eq. (6.27) that the field variableδq̃12 is decoupled from the other two fields. The
solution for this field is

δq̃12 = eλ3 t δq̃0
12 (6.31)

where the coefficientδq̃0
12 is left to be derived from the initial conditions.

6.3.2 The Phase Diagram

From Eq. (6.31), we have
λ3 = E −Gk2 +Rk4 (6.32)

The purpose of the parameterR was to make sure that the consistency condition,λ3 < 0 for
k → ∞, is satisfied. However, a positive value ofG is sufficient to fulfill this condition, and
therefore we can discard higher order derivatives and simply consider that

R = 0 (6.33)

Consistency Condition In Small Wavelength Limit (k →∞)

Since we do not allow instabilities to develop at small length scale, we now investigate when this
condition is satisfied for the other two eigenvaluesλ1,2. A direct calculation from the characteristic
equation gives  λ1 + λ2 ≈ (P +Q) k4, k →∞

λ1 λ2 ≈ P Qk8, k →∞
(6.34)
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The condition is that both these eigenvalues must be negative in the limit of small wavelength,
which implies directly that

P < 0, Q < 0 (6.35)

If we chooseP andQ as having small absolute values, then we do not expect that the phase
diagram could depend on them atfinite wavelengths. To simplify our exposition, we consider the
case

P = Q = −ε < 0, ε→ 0 (6.36)

Large Wavelength Limit (k → 0)

With the choice Eq. (6.36), we can now derive that in the large wavelength limit: λ1 = −Dk2 +O(k4)

λ2 = E −Gk2 +O(k4)
(6.37)

The second eigenvalueλ2 can be positive in this regime, which means that the modek = 0
is unstable, unlessE is negative. The continuity equation for density Eq. (6.3) predicts that the
perturbation in density fork = 0 must be always zero,i.e δ ρ̃0(k = 0) = 0. This make the
instability case fork = 0 as not very interesting, and we consider only the case

E < 0 (6.38)

However, the first eigenvalueλ1 becomespositivein the case of negative diffusion coefficient
D < 0. We mention that this large wavelength instability cannot be oscillatory (Hopf instability)
since the eigenvalueλ1 is a real number.

Finite Wavelength Regime

In the following we will derive the phase diagram by analyzing the sign of the sum and the product
of the eigenvalues. With the choice Eq. (6.36) we derive

λ1 + λ2 = E − (D +G) k2 − 2ε k4 (6.39)

λ1 λ2 = k2P3(k2) (6.40)

and their discriminant

∆ =
(
(D −G)2 + 4F1 F2

)
k4 + 2E (D −G) k2 + E2 (6.41)

whereP3(u) is the third order polynomial:

P3(u) = ε2 u3 + ε(G+D)u2 + (DG− F1 F2 − εE)u−DE (6.42)

Case A.D +G > 0

In this case we can see that the sumλ1 + λ2 is always negative. We can identify instabilities
from the conditionλ1λ2 = 0. It turns out that we have to study the roots of the polynomial
P3(u). A close analysis shows thatP3(u) has either 2 or nopositiveroots ifD > 0, and 1 or 3
positiveroots ifD < 0. Since we know the asymptotic behavior in the limit of small and large
wave lengths (see Eq. (6.34) and Eq. (6.37)) we can determine exactly the number of roots at
intermediate wavelengths. The behavior of the modesλ1,2 is exemplified in Fig. 6.2, and the
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summary of the detailed analysis is shown in in Fig. 6.3. We also mention that, although it is
possible to have complex eigenvalues, it is not possible to have a Hopf bifurcation. Indeed, we
can see from Eq. (6.39) that the real part is negativeReλ = (λ1 + λ2)/2 < 0, and therefore
no such instability is possible.

Case B.D +G < 0.

In this caseλ1 +λ2 can have both signs. To derive what type of instabilities could be possible,
we have to study both the roots ofP3(u) and the sign of the discriminant∆. The behavior of
P3(u) is similar to the previous case. However, a Hopf bifurcation is possible when∆ < 0
andλ1 + λ2 is changing the sign. A complete analysis show that this is possible when

D > 0, D +G < 0, F1 F2 < 0, G > D − 2
√
|F1 F2| (6.43)

We sketched this particular instability in Fig. 6.2 (c).

In Fig. 6.3 we present the phase diagram as a result of the full algebraic analysis, which we have
summarized before.

6.3.3 The Eigenstates

We now derive the eigenvectors from the eigenvalue problem Eq. (6.27) that corresponds to the
eigenvaluesλ1,2 in the unstable conditions. Consider thatλ1 is the largest of the two eigenvalues,

λ1 =
1

2

(
E − (D +G) k2 − 2 ε k4 +

√
(E + (D −G)k2)2 + 4F1F2k4

)
(6.44)

and therefore this eigenvalue corresponds to instabilities. Up to a normalization factor, the corre-
sponding eigenvector is

δρ̃0(k,+)

δq̃0
11(k,+)

δq̃0
12(k,+)

 =


E + (D −G) k2 − ε k4 +

√
(E + (D −G)k2)2 + 4F1F2k4

2F2 k
2

0

 (6.45)

Then, for the particular modek, we have (see also the expansion Eq. (6.23))
δρ0(x)

δq0
11(x)

δq0
12(x)

 = cos(k x)


δρ̃0(k,+)

δq̃0
11(k,+)

0

 (6.46)

where the coefficients areδρ̃0(k,+) andδq̃0
11(k,+) are given by Eq. (6.45). The off-diagonal term

δq12 is zero, which means that the filaments are either longitudinal or transversal. The particular
orientation depends on the sign ofδq̃11(k,+) (see Eq. (6.12)) and therefore on the sign ofF2. In
Fig. 6.4 we sketch the eigenstate that corresponds to the instability of the first modek = π/L. This
happens in the condition of negative diffusion constantD < 0, and forG > 0 andF1F2 < 0 (see
also the diagram from Fig. 6.3). We stress that depending on the sign ofF2 we have the density and
the order parameter modulated as in phase, Fig. 6.4 (a),i.e. preprophase rings with longitudinal
alignment of filaments, or anti-phase Fig. 6.4 (b),i.e. preprophase rings with transversal alignment
of filaments.
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Figure 6.2: Instabilities that occur in the case of pe-
riodic boundary conditions. We plot the largest real
part of the two eigenvalues as a function ofk in (a)
and (b). Cases depend on the real roots of the polyno-
mialP3(k2). (a) One real root ofP3(k2) corresponds
to large wavelength instabilities. (b) Three real roots
of P3(k2), ∆ > 0, correspond to finite wavelength
instabilities. (c) No real roots ofP3(k2), ∆ < 0.
The two eigenvalues are complex, however, their real
part becomes positive at finitek, which corresponds
to Hopf bifurcation.
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Figure 6.3: Instability phase diagram for the case of periodic boundary conditions. We plot instabilities as a function
of the parametersD, G, F1, F2 in the limit of smallε. Three types of instabilities are possible when crossing the
phase space region that corresponds to the stable homogeneous and isotropic states: large wavelength instabilities (see
also Fig. 6.2 (a)), finite wavelength instabilities (see also Fig. 6.2 (b)), and Hopf instabilities (see also Fig. 6.2 (c)).

6.4 Non-Linear Regime

In the previous section we found some regions in the phase space where small deviations from the
disordered state grow exponentially large in time and therefore violate the conditions of the linear
approximation. In order to find the true stationary state in such cases, non-linear terms must be
included. Technically speaking, the non-linear terms limit the exponentially explosive states to a
non-trivial solution of thenon-linearhomogeneous evolution equations.

The problem of dealing with the non-linear evolution equations is still under development.
However, in the following we can already present a demonstrative example of stripe formation,
which resembles the preprophase band in plant cells.

6.4.1 Adiabatic Approximation

In the following we assume that the relaxation time of the order parameterQ
(2)

is much smaller
than the corresponding relaxation time of the density. In addition to this hypothesis, we consider
that the values of the order parameter components are small enough for the evolution equations to
be still considered as linear in the order parameter. In this case, the equation forq12 can be ignored,
since it is decoupled from the rest of the equations. We consider the “slaving” approximation from
Eq. (6.13),i.e. ∂t q11 = 0:

∂tρ = ∂2
x

(
a1 ρ+ a4 ρ

2 + a5 (∂xρ)2 + a6 ρ ∂
2
xρ
)

+ ∂2
x

(
b1 q11 + 2b3 (q2

11 + q2
12) + c1 ρ q11

)
(6.47)

0 = d1 q11 + d2 ∂
2
xq11 +

f1

2
∂2
xρ+ g1 ρ0 q11 + g2 ρ0 ∂

2
xq11 (6.48)

where we have considered only linear terms in the order parameter equation. In the next step we
look for the stationary solutions of these equations. Again, since the order parameter is small, we
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Figure 6.4: Periodic Boundary Conditions with instability of the first mode is possible forD < 0, G > 0, F1F2 < 0.
(a): if F2 > 0 the density and the order parameter are in phase, and the preprophase ring is longitudinal; (b): ifF2 < 0
the density and the order parameter are in anti-phase, and the preprophase ring is transversal.

consider only linear contributions from the order parameter in the density equation. For the case
under discussion, we consider also thatc1 = 0. With the help of Eq. (6.19) and Eq. (6.20), we
rewrite the last equations and use the new notations:

0 = ∂2
x

(
a1 ρ+ a4 ρ

2 + a5 (∂xρ)2 + a6 ρ ∂
2
xρ+ F1 q11

)
(6.49)

0 = E q11 +G∂2
xq11 + F2 ∂

2
xρ (6.50)

Here we mention that the terma6 ρ ∂
2
xρ was not considered in the previous linear stability anal-

ysis, but its importance will be discussed below.
The solution forq11 from Eq. (6.50) can be written formally as

q11 =
1

2π

∫
dk

∫
dx′

F2 k
2

E − k2 G
ρ(x′) ei k (x′−x) = −

∫
dx′ G(x− x′) ρ(x′) (6.51)

whereG(x) is the fundamental solution of the homogeneous equation, and it is given by:

G(x) = − 1

2π

∫
dk

F2 k
2

E − k2 G
ei k x =

F2

G
δ(x)− F2

G

√∣∣∣∣EG
∣∣∣∣e−|x|√|EG | (6.52)

Given the geometry of our system, we consider only thex−component of the current

Jx = η−1 ∂x σxx (6.53)

In the following we will focus on the stationary state for which the current is zero:

Jx = 0 (6.54)

Then we can see from the last two expressions that the stressσxx is constant:

η−1 σxx = −Γ0 (6.55)

Under the condition Eq. (6.54), and taking into account the solution Eq. (6.51), we can integrate
twice the equation Eq. (6.49) and the result is:

Γ0 + a1 ρ+ a4 ρ
2 + a5 (∂x ρ)2 + a6 ρ ∂

2
xρ− F1

∫
dx′ G(x′ − x) ρ(x′) = 0 (6.56)
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Figure 6.5: A demonstrative non-linear solution that corresponds to a stripe-like pattern. The density (solid) line and
the order parameter componentq11 (dotted line) are plotted as a function of the axialx−coordinate of the system. This
solution corresponds to a transverse stripe (i.e. negativeq11 in the region of high filament density).

Figure 6.6: A numerical non-linear solution that resembles a strip-like pattern. The densityρ(x) (solid line) and
the order parameter componentq11 (dashed line) are plotted as a function of the axialx−coordinate. Values of the
parameters:D = −1.5, G = 1.5, F1 F2 = −1.0, E = −1.0, ε = 0.005, a4 = −3.0, a5 = 1.0, a6 = −0.1 (see Eq.
(6.59)). The orientation of the stripe depends on the sign ofq11, which in turn depends on the sign ofF2 sinceG > 0,
as we can see from Eq. (6.61). The plotted solution corresponds in this case to a longitudinal stripe.
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6.4.2 A Stationary Solution

Let us consider the example of small rotational diffusion constantE ≈ 0. Then from Eq. (6.52)

G(x) =
F2

G
δ(x) (6.57)

Now, Eq. (6.56) becomes

(6.58)

Γ0 +

(
a1 −

F1F2

G

)
ρ(x) + a4

(
ρ2 − λ2(∂xρ)2

)
+ a6 ρ ∂

2
x ρ = 0 (6.59)

where

λ2 = −a5

a4

(6.60)

Using Eq. (6.57) we can express the order parameter component from Eq. (6.51) as:

q11(x) = −F2

G
ρ(x) (6.61)

Case A:a6 = 0. In this case we can write the density equation in the form [91]:

Γ0 +

(
a1 −

F1F2

G

)
ρ(x) + a4

(
ρ2 − λ2(∂xρ)2

)
= 0 (6.62)

where

λ2 = −a5

a4

(6.63)

We can solve this equation analytically, and the solution is of the form:

ρ(x) = α + β cosh
(x
λ

)
(6.64)

q11(x) = −F2

G

(
α + β cosh

(x
λ

))
(6.65)

where the coefficientsα andβ are

α = − 1

2 a4

(
a1 −

F1F2

G

)
, β2 =

1

4 a2
4

(
D − F1F2

G

)2

(6.66)

We plot the solutions Eq. (6.64) and Eq. (6.65) in Fig. 6.5, which show a transversal strip-like
solution.

Case B:a6 6= 0. The discontinuity in the previous case is healed by thea6 ρ ∂
2
x ρ term. In

Fig. 6.6, we plot the numerical solution of the corresponding equation Eq. (6.59). We can
see a fully continuous solution in its derivatives, which corresponds to a stripe that is similar
to the preprophase band in higher plant cells.
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6.5 Conclusions and Open Questions

In this chapter we have presented generic aspects of pattern formation in filamentous systems,
which are driven by active components. Based on symmetry analysis, we wrote rotationally invari-
ant evolution equations for the density and the nematic order parameter in the system. In spite of
the generality of the problem, we demonstrated that, based on linear stability analysis, it is possible
to systematically focus on the interesting regions of the phase space, where patterns could emerge.
We derive non-linear solutions in some particular cases, showing how the unstable disordered state
can evolve into a stable pattern.

We find as an encouraging result the stripe-like pattern solution of our generic equations, which
closely resembles the preprophase ring that develops in plant cells at the onset of cell division. A
characteristic of our analysis is the absence of the polarization in the stable ring state. The evidence
of both orientations of microtubule being present does exists [70] for interphase and preprophase
cells, but there is no quantitative measurement of the polarization. Moreover, a non-polar state is
not forbidden by our generic symmetry assumptions,i.e. theSO(2) invariance of the evolution
equations.

The top-down approach that we have adopted in this chapter does not depend on any particular
model specifying how the interaction between filaments could be mediated by motors. It is the aim
of the next chapter to develop such a bottom-up approach in order to see how the corresponding
evolution equations and phase diagram can be compared to the results that we have just presented.
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Chapter 7

Modeling Microtubule Self-Organization
Driven by Active Components

7.1 Introduction

In the previous chapter we have used a top-down approach to study the self-organization and pat-
tern formation in active gels. Here we try to address the same problems by following the most
direct route,i.e. starting from the microscopic level and modeling how the motor mediated inter-
actions between filaments can lead to large scale organization of the system.

The bottom-up approach that we present in this chapter has at least two preliminary objectives.
One is modeling the details of the dynamics of the motor-filament system, which makes possible
the coupling between many individual filaments and, hopefully, leads to non-trivial patterns on a
scale that is much larger than the size of a single filament. The second objective is to derive the
macroscopic consequences of the microscopic model. The procedure that we use to reach this task
is to integrate out all thermal fluctuations in the system, and to define the probability distribution
functionψ(r, û, t), which describes the spatial distribution of the filaments with a given orienta-
tion û. This is accomplished by writing the Smoluchowski equation for the distributionψ(r, û, t),
including the active dynamics that emerges from the modeled interaction between motor proteins
and filaments. After integrating out the angular degrees of freedom, we write the coupled evolution
equation for the relevant macroscopic moments of interest,i.e. the densityρ(r), the polarization

t(r), and the nematic order parameterQ
(2)

(r).
The above procedure was introduced and applied for one dimensional systems in Ref. [92].

For 2 and 3 dimensional systems, Liverpool and Marchetti [101] derived the macroscopic moment
equations only for the first two moments,i.e. density and polarization. However, the expressions
for the active currents they present as being due to motor activity were not derived on the basis of
a microscopic model. The general expressions for these currents are rather derived by imposing
some specific symmetry constrains, which are fulfilled by the dynamics. Still, the treatment that
was explored in Ref. [101] was far from being exhaustive, due to many symmetric possibilities in
the active contributions.

Here we try to be more specific by writing the active terms in the Smoluchowski equation, using
a specific microscopic model. It results that the analytical form of our active currents is different
from those obtained Ref. [101], and as a consequence we must reevaluate the linear stability
analysis and derive a new phase diagram of the system under discussion. We also aim to extend
the discussion to include a second rank moment up to the third moment,i.e. the nematic order
parameter. This gives us the opportunity for a better understanding of the coupling that might exist
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between the polarization and the nematic order parameter.

7.2 A Microscopic Model

7.2.1 The Dynamic Time Scale

The fact that motor proteins can play a role in the self-organization of filamentous systems can
be understood by showing that the correspondingdynamictime scale is much smaller than the
diffusivetime scale. This means that the effect of motor proteins on the filaments is not smeared
out by diffusion. We can see this from the following simple argument. In order to derive the
dynamic time scaleτdyn, we must realize that the only input into the theory is the active force itself
F , a drag coefficientζ, and a length, which should be the linear size of a filament. Indeed, the
following quantity

τDyn =
ζ l

F
(7.1)

has a time dimension, and it must be identified to the desired dynamic time scale. This must be
obvious from the fact that, in order to see a significant displacement, the active force has to balance
the viscous drag. Now, we can compare this time scale to the diffusive time scaleτDiff = l2

D
, where

D is the diffusion coefficient. The ratio of the two time scales is

τDyn
τDiff

=
ζ D

l F
(7.2)

We can make use of Einstein relationζ D = kB T , and the last relation becomes

τDyn
τDiff

=
kB T

l F
≈ 10−3 � 1 (7.3)

The above ratio was evaluated in the condition of room temperaturekB T = 4.1 pN nm, for fil-
aments of1µm in length, and for an active forceF = 1 pN [102]. We can interpret the relation
Eq. (7.3) in the way that self-organization of filaments is possible in general even with motors that
generate forces less than1 pN in strength.

In the next step, we have to realize that, although the filament dynamics is fast in comparison
to the diffusion processes, the motion of the filaments is still slow enough for the dynamics to be
inertialess. We can see that by looking at the correspondinginertia time scale

τIn =
m

ζ
(7.4)

wherem is the mass of a filament. In order to compare this time scale with the dynamic time scale,
we evaluate the ratio

τIn
τDyn

=
mF

ζ2 l
(7.5)

We can relate the massm of a particle to a new quantity, which is called thediffusion length
lDiff =

√
mkB T/ζ (see Ref. [100]). The diffusion length is known to be much smaller than

any relevant linear size of the objectlDiff/l ≈ 10−3 [100]. In other words, in the case of inertia
dominated motion, afreeobject moves as a result of a thermal kick over a distance which is much
smaller than the size of the object itself, and therefore a significant displacement can be recorded
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only on the diffusion time scale. If we want to express the ratio from Eq. (7.5) in terms of the
diffusion length, we can eliminate both the mass of the particle and the drag coefficient:

τIn
τDyn

=
F l

kB T

(
lDiff
l

)2

≈ 10−3 � 1 (7.6)

In the last equation we have used the same values for the force, temperature, and linear size of the
object as in Eq. (7.3). When talking about micron size objects, Eq. (7.6) simply shows that, for
filaments under the action of motor proteins, we are in the case of inertialess dynamics.

7.2.2 Modeling Motor-Filament Interaction

Let us consider the case of a single filament under the action of an externalpoint forceF. Then,
according to Section 7.2.1, the dynamics of this object should be inertialess. In this case, the linear
and angular velocities are, respectively, proportional to the force and torque exerted [100, 99]:

v =

(
1
ζ||

û û + 1
ζ⊥

(I(2) − û û)

)
· F

ω = 1
γR

N

These are the equations of motion for arigid rod under the action of a forceF and torqueN, and
v andω are, respectively, the center of mass translational and angular velocities. The unit vector
û gives the orientation of the filament. In the dilute limit, we have the following relations between
the longitudinalζ||, transversalζ⊥, and rotationalγR drag coefficients, (see [100, 99]): ζ|| = ζ⊥/2

ζ|| = 6 γR

(7.8)

We aim now to implement the equations Eq. (7.7) into a bit more complex system oftwo
filaments that are cross linked by a double motor protein (see Fig. 7.1). In order to describe
how the interaction between these two filaments is mediated by the motors, we consider that the
two motor heads, which walk on the two filaments separately, are connected by a flexible and
inextensible polypeptidestring. The tension T that develops in this string plays the role of the
active force, which puts both filaments into motion separately. In principle, the string tensionT can
be dependent on the relative angle between filaments, and even on the relative motion of the motor
heads on the filaments. However, at zero level approximation we can make the hypothesis that
these dependencies are weak and not relevant for driving homogeneous and isotropic instabilities
in our system. In the next section, we will derive a dependency expression forT(û, û′, ξ), on the
grounds of flexibility and inextensibility properties of the polypeptide string.

Translational Velocity

If we substitute the string tensionT as the active force in Eq. (7.7), then the center of mass
velocities for each filaments are given by:

v =

(
1
ζ||

û û + 1
ζ⊥

(I(2) − û û)

)
·T

v′ = −
(

1
ζ||

û′ û′ + 1
ζ⊥

(I(2) − û′ û′)

)
·T
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Figure 7.1: A double motorMM ′ walking on two filaments with orientationŝu andû′ respectively.

The center of mass velocity for the two-filament system is non-zero for the two and three di-
mensional cases, unlike the unidimensional case studied in Ref. [91, 103, 93]:

vCM =
v + v′

2
=

1

2

(
1

ζ||
− 1

ζ⊥

)
(û û− û′ û′) ·T (7.10)

The particle asymmetry,i.e. the difference in the longitudinal and transversal drag coefficients,
makes possible for this system to “walk” in a viscous background.

We consider in more detail the situation depicted in Fig. 7.1. The connecting link between the
motor headsM andM′ can have many relative orientations with respect to the two filaments. In
the following, weaverageover all possible microstates, which are defined by the relative positions
M andM′. We have to remember that the only constraint that we can impose on these microstates
is a fixed distancedMM′ between the two motor heads, as we can see from the inextensibility
hypothesis for the connecting polypeptide string. If we assume that all relative orientations for the
cross linkMM′ are equally probable, then we can derive the following averages:

〈û ·T〉 = −〈û′ ·T〉 = − T

π/2
sin

θ

2
(7.11)

〈T〉 =
T

π/2

û′ − û

|û′ − û|
(7.12)

We insert these averages into Eq. (7.9), an we can derive the following expressions for the individ-
ual velocities: 

v = −
√

2T
π

(
1
ζ||
− 1

ζ⊥

)
1−û·û′√
1−û·û′ û +

√
2T
π

1
ζ⊥

û′−û√
1−û·û′

v′ = −
√

2T
π

(
1
ζ||
− 1

ζ⊥

)
1−û·û′√
1−û·û′ û

′ −
√

2T
π

1
ζ⊥

û′−û√
1−û·û′

(7.13)

If we make similar averages, we obtain from Eq. (7.10) for the center of mass velocity

vCM = − T√
2π

(
1

ξ||
− 1

ζ⊥

)
(û + û′)

√
1− û · û′ (7.14)
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We have already mentioned that, in general, the tensionT can depend on the filament relative
orientations. However, even without these details, we see from the last formula that the system
center of mass is not displaced in both parallel and anti-parallel configurations of the two filaments.

We will turn now our attention to the relative velocityvrel (ξ, û, û′) = v1 − v2:

vrel (ξ, û, û′) =

(
1

ζ||
− 1

ζ⊥

)(
û (û ·T) + û′ (û′ ·T)

)
+

2

ζ⊥
T (7.15)

If T is substituted with its average values from Eq. (7.11) and Eq. (7.12), the relative velocity
becomes

vrel (ξ, û, û′) =
T

π/2

(
1

ζ||
− 1

ζ⊥

)
(û′ − û) sin

θ

2
+

2

ζ⊥

T

π/2

û′ − û

|û′ − û|
(7.16)

or even:

vrel (ξ, û, û′) =
T

π/2

(
1

ζ||
− 1

ζ⊥

)
(û′ − û) (1− û · û′)

|û′ − û|
+

2

ζ⊥

T

π/2

û′ − û

|û′ − û|
(7.17)

We can bring this last expression into an even more convenient form:

vrel (ξ, û, û′) =

√
2T

π

(
1

ζ||
− 1

ζ⊥

)
(û′ − û) (1− û · û′)√

1− û · û′
+

√
2T

π

2

ζ⊥

û′ − û√
1− û · û′

(7.18)

Angular Velocity

The angular velocity for each filament:

ω = ṅ =
N

γR
, ω′ = ṅ′ =

N′

γR
(7.19)

With the help of Fig. 7.1, we can express the absolute value of the torqueNi for each filament

N = T⊥ (d− s) ≈ T sinφ d, N ′ = T ′⊥ (d′ − s′) ≈ T sinφ′ d′ (7.20)

In the last relations, we have approximatedd − s ≈ d, d′ − s′ ≈ d′, for the very reason that the
cross linked motor-pair is very small compared to the size of the filaments. In the next step, we
perform the same kind of average over cross linkedMM′ microstates,i.e.

〈T sinφ〉 = T 〈sinφ〉 = 〈T sinφ′〉 = T 〈sinφ′〉 = T
cos θ/2

π/2
(7.21)

We apply now the sine theorem for the triangle formed by the crossing point and the mass centers
of the two filaments (see Fig. 7.1):

ξ

sin θ
=

d′

sinφ
=

d

sinφ′
(7.22)

We substituted andd′ from the last equations into the torque equations Eq. (7.20), and making also
the averages Eq. (7.21), we obtain finally theabsolutevalues for the individual angular velocities
from Eq. (7.19):

ω =
2T

πγR

cos θ
2

sin θ
ξ sinφ′ (7.23)

ω′ =
2T

πγR

cos θ
2

sin θ
ξ sinφ (7.24)
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In the last step, we write these relations in the vectorial form:

ω(ξ, û, û′) =

√
2T

πγR

ξ × û′√
1− û · û′

(7.25)

ω′(ξ, û, û′) = −
√

2T

πγR

ξ × û√
1− û · û′

(7.26)

The relative angular velocity of the first filament with respect to the second isωrel(ξ, û, û′) =
ω(ξ, û, û′)− ω′(ξ, û, û′):

ωrel(ξ, û, û′) =

√
2T

π γrot

ξ × û + ξ × û′√
1− û · û′

(7.27)

The expressions Eq. (7.18) Eq. (7.27) for the relative translational and angular velocities are
different from the corresponding expressions used in Ref. [101], which were derived only on sym-
metry grounds. Still, the expressions developed in Ref. [101] were not exhaustive, and therefore
not all symmetry allowed terms were analyzed. Since there is a significant difference in the an-
alytical form between the two variants, we expect that the stability phase diagram cannot be the
same.

7.2.3 An Active Force Model

In the previous section we have presented a microscopic model, in which a two headed motor cross
linked two filaments. The polypeptide bond, which connects the motor heads, was modeled as a
flexibleand inextensiblestring. The string tension is actually the active force that generates the
motion of the two filaments, and in principle can depend on many details like the orientation of the
filaments, and their relative displacements.

Thestring feature of motor head linker makes our model different from the model used in the
computer simulations that were described in Ref. [89].

In the present section, we use the physical properties of the string,i.e. flexibility and inextensi-
bility, in order to derive a more exact expression for the string tensionT. The derived expression
for the tensionT will be used to obtain a detailed formula for the translational and angular veloci-
ties, which we have already discussed in Section 7.2.2.

We assume that theforce-velocityrelation for a motor protein that works against a tangential
load is given by (seeHoward[102]):

v (F ) = vM

(
1−

F||
FM

)
(7.28)

In writing Eq.[7.28], we assumed that the parametersvM andFM are independent on the transversal
component which could be applied (see Fig. 7.3).

In the following we show how the string tension can be computed by using simple kinematical
arguments. The velocity of a given motor head, let us sayM (see Fig. 7.2), is given by the relative
velocityv and the transport velocity,i.e. V|| + V⊥ + Vrot:

VM = v + V|| + V⊥ + Vrot (7.29)

The inextensibility of the string implies that the velocities of the motor heads along the direction
of the string must be equal:
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Figure 7.2: Two filaments can be cross linked by a two head motor protein. Each motor head walks on each filament.
The motion of the heads is constrained by the connecting string. As the motor heads walk, tension is developed in the
string and plays the role of the active force which puts the filaments into motion.

VM cosφ+ VM ′ cosφ′ = 0 (7.30)

We have explicit relations for the translational velocities of the center of mass of each rod:

V|| cosφ =
T|| cosφ

ζ||
=
T cos2 φ

ζ||
(7.31)

V⊥ sinφ =
T⊥ sinφ

ζ⊥
=
T sin2 φ

ζ⊥
(7.32)

For the angular velocity around the center of mass we have:

ω =
N

γrot
(7.33)

The torqueN is given by:
N = x×T (7.34)

In computing the above torque, which is applied to the filamentu, we have approximated the
distance between the motor and the center of mass with the distance between the intersection point
of the filaments and the center of mass of the considered filament. This is allowed because the
physical size of the motor protein is commonly much smaller than the size of the filaments. The
component of the rotational velocity around the center of mass,Vrot = x×ω, along the string, is:

Vrot sinφ =
T x2

γrot
sin2 φ (7.35)

Eq. (7.31) and Eq. (7.35) are given for the motor headM. Similar relations can now be written
for the other head,M′, which walks on the other filament. Using all these expressions together
with Eq. (7.28), we can derive from Eq. (7.30) the following expression for the absolute value of
the tension:

T =
vM(cosφ+ cosφ′)

2
ζ⊥

+
(
vM
FM

+ 1
ζ||
− 1

ζ⊥

)
(cos2 φ+ cos2 φ′) + 1

γrot
(x2 sin2 φ+ x′2 sin2 φ′)

(7.36)



114 Modeling Microtubule Self-Organization Driven by Active Components

0 1 2 3 4 5 6

F   (pN)
0

0.2

0.4

0.6

0.8

1

V
  µ

m
/s

||

(a)

F

F

F

Filament

Motor
head

φ

(b)

Figure 7.3: Tangential Load (for example seeHoward [102]). In our model, it is assumed that theforce-velocity
relation (a) is not affected by the transversal component applied on the motor.

The double head motor complex can be oriented in many ways with respect to the filaments.
For a given angleθ there are possible many values of the anglesφ andφ′. In the following we
consider the average values of these angles as

φ = φ′ =
π

2
− θ

2
(7.37)

For these average angles, we evaluate the string tension as:

T =
vM sin θ

2

1
ζ⊥

+
(
vM
FM

+ 1
ζ||
− 1

ζ⊥

)
sin2 θ

2
+ 1

2γrot
(x2 + x′2) sin2 θ

2

(7.38)

For kinesin we have1

vM ζ||
FM

� 1 (7.39)

and therefore we neglect the ratiovM
FM

in the expression for the tension. In dilute systems we have
(seeDhont[100] andDoi & Edwards[99]):

γrot
L2

=
ζ||
6

=
ζ⊥
12

(7.40)

whereL is the length of a filament. It thus follows:

T =
ζ||vM sin θ

2

1− 1
2

cos2 θ
2

+ 3
4
x2+x′2

(L/2)2 cos2 θ
2

(7.41)

It can be shown that the quantityα:

α =
1

2
cos2 θ

2

(
1− 3

2

x2 + x′2

(L/2)2

)
(7.42)

1FM/ζ|| = FM
ln(L/d)
2πηL

. For filaments,L = 10µm, d = 25nm, the viscosity of cytoplasmη = 0.05 pN sµm−2, thenFM/ζ|| ≈
9µms−1. It follows thatvM ζ||/FM ≈ 0.1 for a motor maximal velocityvM = 0.8µms−1.
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is subunitary:
|α| ≤ 1 (7.43)

Indeed, sincex ≤ L/2 andx′ ≤ L/2, then:

−1 ≤ α ≤ 1/2 (7.44)

Then, the tension can be expressed as:

T = ζ||vM sin
θ

2
(1 + α + α2 + · · · ) (7.45)

For the rest of the present thesis we consider that the following is a satisfactory approximation

T ≈ TM sin
θ

2
(7.46)

whereTM = ζ|| vM ≈ 0.5 pN and represents the strength of the motor.
Finally, we mention that a complete expression forα(ξ, u, u′), which can be derived from Eq.

(7.42), is given by:

α =
1

4
(1 + û · û′)

(
1− 3

8

1

(L/2)2

(
(ξ · (û′ − û))2

(1− û · û′)2
+

(ξ · (û′ + û))2

(1 + û · û′)2

))
(7.47)

7.2.4 The Linear and Angular Velocities (Summary)

We can conclude our discussion about microscopic modeling by deriving the filament velocities
if we take into account the expression Eq. (7.46) for the active force. We obtain the following
expressions for the individual translational velocities

v(ξ, û, û′) = −TM
π

(
1
ζ||
− 1

ζ⊥

)
(1− û · û′) û + TM

π
1
ζ⊥

(û′ − û)

v′(ξ, û, û′) = −TM
π

(
1
ζ||
− 1

ζ⊥

)
(1− û · û′) û′ − TM

π
1
ζ⊥

(û′ − û)

vrel(ξ, û, û′) = TM
π

(
1
ζ||
− 1

ζ⊥

)
(1− û · û′) (û′ − û) + TM

π
2
ζ⊥

(û′ − û)

(7.48)

The corresponding expressions for the angular velocities are:
ω(ξ, û, û′) = TM

πγR
ξ × û′

ω′(ξ, û, û′) = − TM
πγR

ξ × û

ωrel(ξ, û, û′) = TM
πγR

ξ × (û′ + û)

(7.49)

7.3 Smoluchowski Equation and Moment Expansion

If we consider a system of rigid rods, with diameterD and lengthL, then the density distribution
functionψ(r, û, t) for finding a particle at a positionr, with an orientation̂u, at a given moment
of time t, satisfies the normalization condition∫

dr

∫
dûψ(r, û, t) = N (7.50)
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and obeys the conservation law (see [100, 99]):

∂tψ(r, û, t) +∇r · J +R · JR = 0 (7.51)

In the last equation we introduced the operatorR = û×∂û, which applies only to the orientational
degrees of freedom, and we denoted the translation and rotation currents asJ andJR respectively.
The general expressions for these currents are given by

J = −D ·∇rψ −
1

kB T
D · (ψ∇rVex) + Jact (7.52)

JR = −DRRψ −
1

kB T
DR ψRVex + JactR (7.53)

We can identify three types of contributions in these equations. One contribution to these currents
is coming from pure diffusion,i.e. terms∝ ∇rψ, Rψ, another comes fromhard core repulsion,
i.e. terms∝ ∇rVex, RVex, and finally theactivecurrents,Jact andJactR . Explicit expressions for
these terms will be given below.

The diffusion coefficientD is a tensor of second rank and it is given by:

D = D‖ûû +D⊥(I− ûû) (7.54)

These coefficients, together with the rotational difussion coefficientDR, satisfy Einstein relations
[99]

D|| =
kB T

ζ||
, D⊥ =

kB T

ζ⊥
, DR =

kB T

ζR
(7.55)

In the following we will derive the evolution equation forirreducible moments. For this, we

have to multiply both sides of Eq. (7.51) by the components of the irreducible tensorsT
(l)

(û),
which we defined in Eq. (7.185). This result is integrated over all possible orientationsû, and
finally the moment equation is derived with the use of moment definitions from Eq. (7.196). We
are interested in an irreducible tensor expansion like Eq. (7.202), up to the second rank,l ≤ 2.
The result is a set of differential equations that couples the densityρ, as the zero rank moment,

the polarizationt, as the first rank moment, and the nematic order parameterQ
(2)

, as the second
rank irreducible moment. We will limit the discussion in this thesis to linear contributions only.
However, we are interested to derive a phase diagram that showslarge scaleinstabilities of the
homogeneous and isotropic state, and we expect therefore that expansions up to second order in
the derivatives of the relevant quantities are sufficient.

7.3.1 Diffusion of Free Rods

The simplest case is the case of free rods,i.e. no active or hard core repulsion. The moment equa-
tions are derived following the program that we have described above. The second rank moment is

the nematic order parameterQ
(2)

, which is a traceless symmetric tensor, and a consistency check
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shows that this property is preserved by the evolution equation of this moment.

∂tρ =
D|| + (d− 1)D⊥

d
∇r

2ρ+ (D|| −D⊥)∇r∇r : Q
(2)

(7.56)

∂tt =
D|| + (d+ 1)D⊥

d+ 2
∇r

2t + 2
D|| −D⊥
d+ 2

∇r∇r · t− (d− 1)DR t (7.57)

∂tQ
(2)

= −2dDR Q
(2)

+ 2
D|| −D⊥
d (d+ 2)

(
∇r∇rρ−∇r

2ρ
I

d

(2)
)

+
D|| + (d+ 3)D⊥

d+ 4
∇r

2Q
(2)

+ 2
D|| −D⊥
d+ 4

(
∇r∇r ·Q

(2)
+
(
∇r∇r ·Q

(2)
)T
− 2∇r∇r : Q

(2) I

d

(2))
(7.58)

7.3.2 Excluded Volume Interaction

In order to include the effect of the excluded volume interactions, we follow theeffective potential
approach discussed in Ref. [101].

The contribution to the currents are

J = − 1

kB T
D · (ψ∇rVex) (7.59)

JR = − 1

kB T
DR ψRVex (7.60)

where the effective potentialVex is given by

Vex(r, û) = kB T

∫
û′

∫ ′
ξ
ψ(r + ξ, û′) (7.61)

In the last expression, the prime restricts the integral to the excluded volume.
Our aim is to studylarge scale instabilities, and therefore the relevant length scale of the emerg-

ing pattern is expected to be much larger than the linear size of a single filament. Because of this,
the running variableξ in the above excluded volume integral can be regarded as a small variable,
and we therefore expandψ(r + ξ, û′) in Taylor series (see also [101]).

ψ(r + ξ, û′) = ψ(r, û′) + ξ′i e
′
i ·∇rψ(r, û′) +

ξ′iξ
′
j

2
(e′i ·∇r)(e

′
j ·∇r)ψ(r, û′) (7.62)

In the above expression we have defined the vectors:

e′1 =
û′ + û

|û′ + û|
, e′2 =

û′ − û

|û′ − û|
, e′3 = e′1 × e′2 (7.63)

Eq. (7.61) becomes

Vex(r, û)

kB T
=

∫
û′

∫ ′
ξ

(
ψ(r, û′) + ξ′i e

′
i ·∇rψ(r, û′) +

ξ′iξ
′
j

2
(e′i ·∇r)(e

′
j ·∇r)ψ(r, û′)

)
(7.64)
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The integrals over the excluded volume give the results:∫ ′
dξ′ = Γ0 (7.65)∫ ′
dξ ξ′i = 0 (7.66)∫ ′
dξ ξ′iξ

′
j = δijΓi, i = 1, 2, 3 (7.67)

where

Γ0 = 2DL2 sin θ ≡ γ0 sin θ (7.68)

Γ1 =
DL4

6
(1 + cos θ) sin θ ≡ γ1 (1 + cos θ) sin θ (7.69)

Γ2 =
DL4

6
(1− cos θ) sin θ ≡ γ2 (1− cos θ) sin θ (7.70)

Γ3 =
2

3
D3 L2 sin θ = O(D4) (7.71)

By making use of̂u′ · û = cos θ and the definitions of thee′i vectors from Eq. (7.63), therhs of
Eq. (7.64) becomes:

Vex(r, û)

kB T
=
∫
dû′

(
γ0

√
1− (û · û′)2ψ(r, û′)

+
γ1

4

√
1− (û · û′)2((û′ + û) ·∇r)((û

′ + û) ·∇r)ψ(r, û′)

+
γ1

4

√
1− (û · û′)2((û′ − û) ·∇r)((û

′ − û) ·∇r)ψ(r, û)
)

(7.72)

We have just neglected the term proportional toD3, since the aspect ratio of our rods is very large.
We can make use of the Taylor expansion:√

1− (û · û′)2 = 1− (û · û′)2

2
+O((û · û′)4) (7.73)

because there is a small probability of having(û · û′)2 close to one,i.e. when the convergence of
the Taylor series fails. Indeed our argument is consistent with the fact that we study instabilities in
a disordered system and therefore there is a small probability of having two parallel filaments.

Vex(r, û)

kB T
=

∫
dû′

(
γ0

(
1− (û · û′)2

2

)
ψ(r, û′)

+
γ1

2

(
1− (û · û′)2

2

)
(û′û′ + ûû) :∇r∇r ψ(r, û′)

)
(7.74)

Translational Current

We now focus on translational current only. The Smoluchowski equation is:

∂t ψ(r, û, t) ∝ −∇r · J(r, û) (7.75)
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The equations for the first relevant moments are:

∂t

 ρ(r)
t(r)

Q
(2)

(r)

 ∝ −∫ dû

 1
û

û û− I
d

(2)

∇r · J(r, û) (7.76)

Now we proceed to compute the contribution to translational current moments from the ex-
cluded volume interaction:

−∇r · J(r, û) =∇r ·D ·
(
ψ(r, û)∇r

Vex(r, û)

kB T

)
(7.77)

In a more explicit form one has:

−
∫

dû∇r · J(r, û) =

∫
dû

∫
dû′∇r ·

(
D‖ûû +D⊥(I− ûû)

)
ψ(r, û) ·∇r(

1− (û · û′)2

2

)(
γ0 ψ(r, û′) +

γ1

2
(û′û′ + ûû) :∇r∇r ψ(r, û′)

)
(7.78)

If the theQ -moments are expressed in terms of irreducible tensors, we have the result for the
translational current contributionin the linear approximation:

∂t ρ(r) = γ0 ρ0
2d− 1

2 d

(
D|| + (d− 1)D⊥

d

)
∇r

2 ρ− γ0 ρ0

D|| − D⊥
d (d+ 2)

∇r∇r : Q
(2)

(7.79)

∂t t(r) = 0 (7.80)

∂t Q
(2)

(r) = γ0 ρ0
2 d− 1

d (d+ 2)
(D|| −D⊥)

(
∇r∇r ρ− ∇r

2 ρ
I

d

(2)
)

− γ0 ρ0

D|| + (d+ 3)D⊥
d (d+ 2) (d+ 4)

∇r
2 Q

(2)

− 2γ0 ρ0

D|| −D⊥
d (d+ 2) (d+ 4)

(
∇r∇r ·Q

(2)
+
(
∇r∇r ·Q

(2)
)T

− 2∇r∇r : Q
(2) I

d

(2))
(7.81)

Rotational Current

We focus this time on the rotational contribution from the excluded volume effect to the Smolu-
chowski equation:

∂t ψ(r, û, t) ∝ −(û× ∂û) · JR(r, û) (7.82)

∂t

 ρ(r)
t(r)

Q
(2)

(r)

 ∝ −∫ dû

 1
û

û û− I
d

(2)

 (û× ∂û) · JR(r, û) (7.83)

The excluded volume contribution to the rotational current is:

JR = −DR ψ(r, û) (û× ∂û)
Vex(r, û)

kB T
(7.84)
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Identity 1 For any scalar functionA andB that depends on the unit vectorû only, the following
is true: (

û× ∂û

)
·
(
A (û× ∂û)B

)
=∇û ·

(
A∇ûB

)
(7.85)

With the help of the above identity we have:

−
(
û× ∂û

)
· JR = DR∇û ·

(
ψ(r, û)∇û

Vex(r, û)

kB T

)
(7.86)

Theorem 1 (Gauss) For any vectorial functionA which depends on the unit vectorû only, the
following is true: ∫

dû∇û ·A = (d− 1)

∫
dû û ·A (7.87)

Corollary 1 (Gauss) For any scalar functionψ(û) which depends on the unit vectorû only, the
following is true: ∫

dû∇û ψ(û) = (d− 1)

∫
dû ûψ(û) (7.88)

If we apply this theorem directly to compute the rotational contribution to the zero-th moment:

∂t ρ(r) =

∫
dûDR∇û ·

(
ψ(r, û)∇û

Vex(r, û)

kB T

)
= 2DR

∫
dûψ(r, û) û ·∇û

Vex(r, û)

kB T
= 0 (7.89)

becausêu ·∇û = 0. For the other moments we obtain the following results:

∂t t(r) = −DR

∫
dûψ(r, û)∇û

Vex(r, û)

kB T

∂t Q
(2)

(r) = −DR

∫
dûψ(r, û)

(
∇û

Vex(r, û)

kB T
û + û∇û

Vex(r, û)

kB T

)
(7.90)

Finally we use Eq. (7.74) for the explicit expression of the excluded volume potentialVex, and
we obtain the following results forthe rotational contribution in the linear approximation:

∂t ρ(r) = 0 (7.91)

∂t t(r) = 0 (7.92)

∂t Q
(2)

(r) =
2DR γ0 ρ0

d+ 2
Q

(2)
+

2DR γ1 ρ0

(d+ 2)(d+ 4)
∇r

2 Q
(2)

− DR γ1 ρ0
2d2 + 3d− 4

d (d+ 2)2

(
∇r∇r ρ−∇r

2ρ
I

d

(2)
)

+
4DR γ1 ρ0

(d+ 2) (d+ 4)

(
∇r∇r ·Q

(2)
+
(
∇r∇r ·Q

(2)
)T

− 2∇r∇r : Q
(2) I

d

(2))
(7.93)
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7.3.3 Active Interaction

Consider again the system of two filaments. If the relative translational and angular velocity of
the first filament,i.e. (r, û), arevrel(ξ, û, û′) andωrel(ξ, û, û′), then the active translational and
rotational currents are given by:

Jact(r, û) =

∫
dû′

∫ ′
dξ vrel(ξ, û, û′)ψ(r, û)ψ(r + ξ, û) (7.94)

JactR (r, û) =

∫
dû′

∫ ′
dξωrel(ξ, û, û′)ψ(r, û)ψ(r + ξ, û) (7.95)

For the model that we use, the expressions for the velocities were derived as in Eq. (7.48) and
Eq. (7.49), and we use those expressions in the form vrel(ξ, û, û′) = A (1− û · û′) (û′ − û) +B (û′ − û)

ωrel(ξ, û, û′) = C ξ × (û′ + û)
(7.96)

where the coefficients are given by

A =
TM
π

(
1

ζ||
− 1

ζ⊥

)
, B =

TM
π

2

ζ⊥
, C =

TM
πγR

(7.97)

Active Translational Current

The contribution to Smoluchowski equation is∂t ψ(r, û, t) ∝ −∇ · Jact(r, û). Using the same
expansion like Eq. (7.62) we derive:

−∇ · Jact(r, û) = −∇ ·
∫

dû′
∫ ′

dξ

(
A (1− û · û′) (û′ − û) +B (û′ − û)

)
ψ(r, û)ψ(r, û′)

(7.98)

Here we kept the expansion inξ only up to the zeroth order. The first reason is that the linear
term gives zero when it is integrated over the excluded volume area. The second reason is that the
quadratic term involves third order space derivatives forψ(r, û, t), which we disregard since small
length scale details are not relevant. However, the quadratic term also has a contribution to second
order space derivatives, but that contribution is not linear. After performing the spatial integral, we
obtain

− ∇ · Jact(r, û) =

− ∇ ·
∫

dû′
(
A (1− û · û′) (û′ − û) +B (û′ − û)

)
ψ(r, û)ψ(r, û′) γ0

√
1− (û · û′)2

(7.99)
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We used this expression to derive the evolution equation for moments, and keeping only linear con-
tributions we obtain the following result forthe contribution from the active translational currents:

∂t ρ = 0

∂t t = γ0 ρ0
−A−2B+5Ad+3B d+2Ad2+2B d2

d2 (d+2)
∇rρ

+ γ0 ρ0
−2A−4B+7Ad+3B d+2Ad2+2B d2

2 d (d+2)
∇r ·Q

(2)

∂t Q
(2)

= γ0 ρ0
(A+B) (2d+3)

2 (d+2)2

(
∇rt +

(
∇rt

)T
− 2∇r · t I

d

(2)
)

Active Rotational Current

The contribution to Smoluchowski equation is∂t ψ(r, û, t) ∝ −∇ · JactR (r, û). Using the same
expansion like Eq. (7.62) we derive:

−û× ∂û · JactR (r, û) = −û× ∂û ·
∫

dû′
∫ ′

dξ C ξ × (û′ + û)ψ(r, û) ξ′i e
′
i ·∇rψ(r, û′)

(7.101)

This time we have a contribution only from the linear term of the expansion forψ(r + ξ, û). The
reason is, as we can see, the angular velocityω brings in a linear factor inξ, and the steric integral
is non-zero only for even powers ofξ components. When we perform the spatial integral, the result
is

−û× ∂û · JactR (r, û) = C γ1 û× ∂û ·
∫

dû′ ψ(r, û) (û′ + û)×α (7.102)

where we have defined the vector

α =
√

1− (û · û′)2 (ûû + û′û′) ·∇rψ(r, û′) (7.103)

We used this expression to derive the evolution equation for moments, and keeping only linear
contributions we obtain the following result forthe contribution from the active rotational currents:

∂t ρ = 0

∂t t = γ1 ρ0 C
3−d−2 d2

2 d2 (d+2)
∇rρ+ γ1 ρ0 C

3−d−2 d2

2 d (d+2)
∇r ·Q

(2)

∂t Q
(2)

= γ1 ρ0 C
2 d+3

2 (d+2)2

(
∇rt +

(
∇rt

)T
− 2∇r · t I

d

(2)
) (7.104)
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7.4 Linear Stability Analysis

7.4.1 Linear Coupled Moment Equation

In the last section we have derived the coupled evolution equations for the moments up to the
linear order. In order to simplify our analysis, we rewrite those equations with new notations for
the coefficients.

∂tρ = D00∇r
2ρ+D02∇r∇r : Q

(2)

∂tt = D0
11∇r

2t +D1
11∇r∇r · t +D11 t + A10∇rρ+ A12∇r ·Q

(2)

∂tQ
(2)

= D0
22∇r

2 Q
(2)

+D1
22

(
∇r∇r ·Q

(2)
+
(
∇r∇r ·Q

(2))T − 2∇r∇r : Q
(2) I

d

(2)

)

+ D22 Q
(2)

+D20

(
∇r∇rρ− I

d

(2)∇r
2ρ
)

+ A21

(
∇r t +

(
∇r t

)T − 2∇r · t I
d

(2)

)
We consistently use letterD’s for all passiveandentropiccontributions, andA’s for all the cor-
respondingactivecontributions. The exact algebrical expressions for all these coefficients can be
read off by making a direct comparison between Eq. (7.105) and Section 7.3.4.

In the following we are going to present the linear stability analysis for the equations Eq.
(7.105). For this purpose, it is not necessary to know the exact expressions for these coefficients.
It is however sufficient to know their signs, which can be derived if we insert exact expressions for
the translational,D|| andD⊥, and rotational diffusion coefficients,DR.

We study the case when the rotational diffusion is dominating the translational diffusion. This
is precisely the case of the dilute limit (seeDoi & EdwardsandDhont[100, 99] ), and the relation-
ships between the diffusion constants are:{

D|| =
DR

6

D⊥ = DR

12

(7.106)

In this case then we can settle for sure the sign of the coefficients:

D00 > 0 (7.107)

D0
11 > 0, D1

11 > 0, D11 < 0 (7.108)

A10 < 0, A12 < 0 (7.109)

D0
22 > 0, D1

22 > 0 D20 < 0 (7.110)

A21 > 0 (7.111)

The exact expressions for the coefficients

D02 =
(
D|| −D⊥

)(
1− γ0 ρ0

d (d+ 2)

)
, D22 = −2 dDR

(
1− γ0 ρ0

d (d+ 2)

)
(7.112)

show that their signs are changed at a specific value of the density,ρc = d(d+ 2)/γ0, which is the
critical density of theisotropic-nematicinstability (see below). With respect to this value for the
density we have the following signs:

D02 > 0 and D22 < 0, for ρ0 < ρc (7.113)

D02 < 0 and D22 > 0, for ρ0 > ρc (7.114)
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7.4.2 Periodic Boundary Conditions

We consider the Fourier components of the moments,ρk, tk, Q
(2)

k . The corresponding equations
for these components can be rewritten in a more convenient form if we decompose the Fourier
components of the polarizationtk into thelongitudinal, t

||
k, andtransversal, t⊥k , components:

k2 tk = tk
|| + tk

⊥ = k k · tk − k× (k× tk) (7.115)

We make a similar decomposition for the second rank tensorQ
(2)

:

k4 Q
(2)

= k k
(
k k : Q

(2)

k

)
− k k× (k× k ·Q(2)

k )− k2 k× (k×Q
(2)

k ) (7.116)

Then, the evolution equation for the Fourier components of the moments can be written in the
form:

∂t Vk = Mk Vk (7.117)

where the “vector”Vk is

Vk =



(k k− I(2)) ρk

(k k− I(2))tk · k

(k k− k2 I(2)) k k : Q
(2)

k

k × (k× tk) k

k× (k× k ·Q(2)

k ) k

k× (k×Q
(2)

k )



(7.118)

and the matrixMk is given by:
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M
k

=

                           

−
D

0
0
k

2
0

−
D

0
2

0
0

0

i
A

1
0
k

2
D

1
1
−

(D
0 1
1

+
D

1 1
1
)
k

2
i
A

1
2

0
0

0

−
D

2
0

( 1
−

1 d

) k4
2
i
A

2
1

( 1
−

1 d

) k2
D

2
2
−
( D

0 2
2

+
2
D

1 2
2

( 1
−

1 d

)) k
2

0
0

0

0
0

0
D

1
1
−
D

0 1
1
k

2
i
A

1
2

0

0
0

0
i
A

2
1
k

2
D

2
2
−

(D
0 2
2

+
D

1 2
2
)
k

2
0

D
2
0

d
k

2
−

2
i
A

2
1

d
2
D

1 2
2

d
i
A

2
1

−
D

1 2
2

D
2
2
−
D

0 2
2
k

2

                           
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7.4.3 Variable Separation and Eigenvalue Problem

In order to solve the equation Eq. (7.117) we use the following ansatz

Vk = eλ t Ṽk (7.119)

In this case the equation becomes
λṼk = Mk Ṽk (7.120)

As we can see the separation of variables leads to the eigenvalue problem of the matrixM . The
eigenvaluesλ are solutions of the following equation:

det(Mk − λ I(6)) = 0 (7.121)

The matrixMk, which we have derived in Section 7.4.2, is aGauss block diagonalmatrix. We
can readily see that one eigenvalue is:

λ1 = D22 −D0
22 k

2 (7.122)

In order to derive the rest of the eigenvalues, we decompose the secular matrix into two block-
diagonal matrixes:

M1
k =


−D00 k

2 0 −D02

i A10 k
2 D11 − (D0

11 +D1
11) k2 i A12

−D20

(
1− 1

d

)
k4 2 i A21

(
1− 1

d

)
k2 D22 −

(
D0

22 + 2D1
22

(
1− 1

d

))
k2


(7.123)

M2
k =

 D11 −D0
11 k

2 iA12

iA21 k
2 D22 − (D0

22 +D1
22) k2

 (7.124)

7.4.4 Isotropic-Nematic Instability

In the previous section we have anticipated that one of the eigenvalues isλ1 = D22 − D0
22 k

2.

The correspondingeigenvectorṼk has all of the components equal to zero, exceptk× (k×Q
(2)

k ).

Since the other components are zero, it means thatρk = 0, tk = 0 andk ·Q(2)

k = 0. If we make
the inverse Fourier transform for these components we see that for this state we have a constant
density,ρ = ρ0, and no polarization,t = 0.

The explicit expression of the eigenvalue Eq. (7.122) is

λ1 = −2 dDR

(
1− γ0 ρ0

d (d+ 2)

)
−k2

(
D|| + (d+ 3)D⊥

d+ 4

(
1− γ0 ρ0

d (d+ 2)

)
+ 2

Drotγ1 ρ0

(d+ 2) (d+ 4)

)
(7.125)

From the general form Eq. (7.119), we see that there are instabilities for positive values of the
eigenvalues. We see thatλ1 < 0 if the density of the filaments is less than a critical value

ρ0 < ρc =
d (d+ 2)

γ0

(7.126)
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whereγ0 = 2DL2 is the excluded volume for rods. We summarize this case in Fig. 7.4. We
see that, when the density is larger that its critical valueρc, the first mode to become unstable
corresponds to the zero wavenumberk = 0. An instability with k = 0 means that the order

parameterQ
(2)

remains homogeneous. As a conclusion, we identify this instability as theisotropic-
nematicinstability. We can see that motors play no role, and the instability is driven only by the
excluded volume interaction.

We can see from Eq. (7.126) that the critical densityρc scales with the inverse of the excluded
volume. This is an encouraging qualitative result, since this is well established for the isotropic-
nematic transitions for hard rods [73]. We stress that the result Eq. (7.126) is derived for both 2D
and 3D case.

7.4.5 Instabilities at Constant Density

We now compute the eigenvalues that correspond to the matrixM2
k from Eq. (7.124). The matrix

M2
k is a block matrix inside the matrixMk from Section 7.4.2. The eigenvectors, which correspond

to the general eigenvalue problem Eq. (7.120), have the form

Ṽ23
k =



0
0
0

k× (k× tk) k

k× (k× k ·Q(2)

k ) k

k× (k×Q
(2)

k ) k

 (7.127)

The first three entries of this vector are zero, and this corresponds to the following equations:

ρk = 0 (7.128)

tk · k = 0 (7.129)

k k : Q
(2)

k = 0 (7.130)

If we make the inverse Fourier transform for the vectorṼ23
k , we have for the space representation

ρ = ρ0 = const (7.131)

∇r · t = 0 (7.132)

∇r∇r : Q
(2)

= 0 (7.133)

∇r × t 6= 0 (7.134)

∇r ×∇r ·Q
(2) 6= 0 (7.135)

∇r ×Q
(2) 6= 0 (7.136)

(7.137)

Now, in order to derive the eigenvaluesλ23 for this case, we denote as̃v23
k the nonzero compo-

nent of the vector̃V23
k ( from Eq. (7.127)):

ṽ23
k =


k×(k× tk) k

k× (k× k ·Q(2)

k ) k

k× (k×Q
(2)

k )

 (7.138)
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Figure 7.4:Isotropic-nematicinstabilities. This instability is driven by hard core interaction only, and motors play no
role.
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Using this notation, we can rewrite the eigenvalue problem as:

λ ṽ23
k =


D11 −D0

11 k
2 iA12 0

iA21 k
2 D22 − (D0

22 +D1
22) k2 0

i A21 −D1
22 D22 −D0

22 k
2

 ṽ23
k (7.139)

One eigenvalue of this problem is
λ1 = D22 −D0

22 k
2,

which corresponds to the isotropic-nematic instability, as we have seen in the previous section.
The other two eigenvalues are given by the equation:

det
D11 −D0

11 k
2 − λ iA12

iA21 k
2 D22 − (D0

22 +D1
22) k2 − λ

= 0 (7.140)

The solutions of this equation are:

λ2,3 =
1

2
D11 +D22 − (D0

11 +D0
22 +D1

22) k2

± 1

2

√
−4A12 A21 k2 +

(
D11 −D22 + (−D0

11 +D0
22 +D1

22) k2
)2

(7.141)

Density homogeneous instabilities: small k limit.

We considerλ2 as the largest of the eigenvalues from Eq. (7.141). In the limit of large wavelengths
we have:

λ2 =
D11 +D22 + |D11 −D22|

2
+O(k2) =

{
D11 +O(k2) for D11 > D22

D22 +O(k2) for D11 < D22
(7.142)

Because

D11 = −(d− 1)DR, and D22 = −2dDR

(
1− γ0 ρ0

d (d+ 2)

)
(7.143)

it is easy to see thatλ2 is becoming positive forρ > ρc (see also Fig 7.5).

Density homogeneous instabilities: large k limit.

Since the theory that we present is designed for large scales, it is necessary to make the consistency
check that instabilities are not developing in the limit of small wavelengths,i.e. whenk → ∞. In
this limit we have

λ2 ≈
−(D0

11 +D0
22 +D1

22)k2 + | −D0
11 +D0

22 +D1
22| k2

2

=
1

2

 −2D0
11 k

2 forD0
22 +D1

22 > D0
11

−(D0
22 +D1

22) k2 forD0
22 +D1

22 > D0
11

(7.144)

The coefficientsD0
22, D

0
11 andD1

22 are known to be positive, and it follows from the last relations
that

λ2 < 0 for large k (7.145)
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Density homogeneous instabilities: finite wave length instability.

Since we know that in both limits of large and smallk the eigenvalues are negativeλ2,3 < 0, we
investigate now if it is possible that at least one of them can become positive at somefinite value
of k. In order to check if one of these eigenvalues is changing the sign we have to study if the
equation

λ2 λ3 = 0 (7.146)

hasreal roots ink. We write the last equation in the following explicit form:

D11 D22 + (A12 A21 −D0
11 D22 −D11(D0

22 +D1
22))k2 +D0

11(D0
22 +D1

22)k4 = 0 (7.147)

We regard this equation as a quadratic equation ink2. Its discriminant

∆ = (A12 A21 −D0
11 D22 −D11(D0

22 +D1
22))2 − 4D11 D22 D

0
11(D0

22 +D1
22) (7.148)

has to be necessarily positive if thek2 roots are real. The Viète relations can predict the signs of
the roots, in the case that these are real:

k2
1 + k2

2 = −A12 A21 −D0
11 D22 −D11(D0

22 +D1
22)

D0
11(D0

22 +D1
22)

k2
1 k

2
2 =

D11 D22

D0
11(D0

22 +D1
22)

(7.149)

The discriminant∆ and the sumk2
1 +k2

2 are larger than zero if the absolute value of the product
A12 A21 is larger than a certain critical value, which depends on the other coefficients. This implies
that there is required a certain strength for the motors in order to trigger instabilities. From Viète
relations, we see that the sum and the product of the roots are positive, which means finite wave
length instability. For densities larger than the nematic densities,ρ0 > ρc, the rootsk2

1,2 are both
real but of opposite signs, which means thatonly one of them,k1 or k2 must imaginary. However,
the other root is real. This discussion is summarized in Fig. 7.5, where we exemplify our results
with numerical values for all the parameters that are involved.

Finally, we stress that, based on the sign analysis of theD’s andA’s coefficients, the eigenvalues
λ2,3 are both real, and therefore no Hopf bifurcations are expected.

7.4.6 Instabilities towards Inhomogeneous States

We compute now the eigenvalues that correspond to the matrixM1
k from Eq. (7.123). The matrix

M1
k is a block matrix inside the matrixMk from Section 7.4.2. The eigenvectors, which correspond

to the general eigenvalue problem Eq. (7.120), have the form

Ṽ456
k =



(k k− I(2)) ρk

(k k− I(2)) tk · k

(k k− I(2)) k k : Q
(2)

k

0

0

k× (k×Q
(2)

k ) k


(7.150)
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Figure 7.5: Homogeneous instabilities. For low den-
sity, (a) and (b), only strong motors can trigger an
instability (λ2 > 0). For large density, (c), instabil-
ities are driven by hard core interaction and motors
are not playing a significant role.
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The two zero entries of this vector correspond to the equation:

k× tk = 0 (7.151)

k× k ·Q(2)

k = 0 (7.152)

If we make the inverse Fourier transform for the vectorṼ456
k , we have for the space representation

∇r ρ 6= 0 (7.153)

∇r · t 6= 0 (7.154)

∇r∇r : Q
(2) 6= 0 (7.155)

∇r × t = 0 (7.156)

∇r ×∇r ·Q
(2)

= 0 (7.157)

∇r ×Q
(2) 6= 0 (7.158)

(7.159)

Now, in order to derive the eigenvaluesλ456 for this case, we denote as̃v456
k the nonzero com-

ponent of the vector̃V456
k (from Eq. (7.150)):

ṽ456
k =



(k k− I(2)) ρk

(k k− I(2)) tk · k

(k k− I(2)) k k : Q
(2)

k

k× (k×Q
(2)

k )


(7.160)

Using this notation, we can rewrite the eigenvalue problem as:

λ ṽ456
k = m456

k ṽ456
k (7.161)

Where the matrixm456
k is

−D00 k
2 0 −D02 0

i A10 k
2 D11 − (D0

11 +D1
11) k2 i A12 0

−D20

(
1− 1

d

)
k4 2 i A21

(
1− 1

d

)
k2 D22 −

(
D0

22 + 2D1
22

(
1− 1

d

))
k2 0

D20

d
k2 −2 i A21

d
2
D1

22

d
D22 −D0

22 k
2


(7.162)

Again, one of the eigenvalues isλ1 = D22−D0
22 k

2, which corresponds to the isotropic-nematic
instabilities, and we have discussed it Section 7.4.4.

The last three eigenvalues to be determined,λ4,5,6, are the eigenvalues of the matrixM1 from
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Eq. (7.123):

det

−D00 k
2 − λ 0 −D02

i A10 k
2 D11 − (D0

11 +D1
11) k2 − λ iA12

−D20

(
1− 1

d

)
k4 2 i A21

(
1− 1

d

)
k2 D22 −

(
D0

22 + 2D1
22

(
1− 1

d

))
k2 − λ

= 0

(7.163)
We can write this equation in a more explicit form:(

D11 −(D0
11 +D1

11) k2 − λ

)(
D00 k

2 + λ

)(
D22 −

(
D0

22 + 2D1
22

(
1− 1

d

))
k2 − λ

)

+ D02 D20

(
1− 1

d

)(
D11 − (D0

11 +D1
11) k2 − λ

)
k4

+ 2A21

(
1− 1

d

)(
A12(D00 k

2 + λ)−D02 A10 k
2

)
= 0 (7.164)

Density instabilities: the small k limit.

It is not difficult to derive the roots of the cubic equation in the limit of large wavelengthsk → 0:

λ4 = D11 − (D0
11 +D1

11) k2 +O(k4)

λ5 = −D00 k
2 +O(k4)

λ6 = D22 −

(
D0

22 + 2D1
22

(
1− 1

d

))
k2 +O(k4)

(7.165)

SinceD11 = −(d − 1)DR < 0, D00 > 0, it follows that λ45 < 0. However, sinceD22 =
−2 dDR (1 − γ0 ρ0/d (d + 2)), it follows thatλ6 < 0 only for densities that are smaller than the
critical densityρ < ρc (see Fig. 7.6).

Density instabilities: the large k limit.

In this limit all the eigenvalues scale likek2:

λ ≈ γ k2, k →∞ (7.166)

We take this form for the eigenvaluesλ in order to insert it in Eq. (7.164). In doing this, we derive
the following equation forγ:

(D0
11 +D1

11 + γ)

(
(D00 + γ)

(
D0

22 + 2D1
22

(
1− 1

d

)
+ γ
)
−D02 D20

(
1− 1

d

))
= 0 (7.167)

We can immediately see that one of the roots isγ4 = −(D0
11 +D1

11), i.e.

λ4 = −(D0
11 +D1

11) k2 < 0, k →∞ (7.168)
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This shows that the consistency condition of having no instability for small wavelengths for this
eigenvalue is satisfied.

The other twoγ roots satisfy the quadratic equation:

γ2 + γ

(
D00 +D0

22 + 2D1
22

(
1− 1

d

))

+ D00

(
D0

22 + 2D1
22

(
1− 1

d

))
−D02 D20

(
1− 1

d

)
= 0 (7.169)

The discriminant and Viète relations for the last equations are:

∆ =

(
D00 −D0

22 − 2D1
22

(
1− 1

d

))2

+ 4D02 D20

(
1− 1

d

)
γ5 + γ6 = −

(
D00 +D0

22 + 2D1
22

(
1− 1

d

))

γ5 γ6 = D00

(
D0

22 + 2D1
22

(
1− 1

d

))
−D02 D20

(
1− 1

d

)
(7.170)

Low Density ρ0 < ρc. In this case we haveD02 D20 < 0 and the roots can be either real
or complex. In the case when the roots are real, their sum is negative and the product is
positive, which means thatγ5,6 < 0. In case that the roots are complex, they must be complex
conjugate. More, their sum is negative, as we can see from the Viète relations. Since the real
part of these roots is half of their sum, we have:

Re(λ5,6) = Re(γ5,6)k2 < 0, k →∞ (7.171)

High Density ρ0 > ρc. Now D02 D20 < 0, i.e. ∆ > 0 and the roots are real. From
Vi ète relations it follows that their sum is negative. If we use the explicit expressions forD
coefficients, a little algebra can show that their product is positive.

λ5,6 = γ5,6 k
2 < 0, k →∞ (7.172)

Density instabilities: finite wave length instabilities and the case of strong motors

Since we know the asymptotic behavior in both large and small wavelength limits, we can extract
some information about the intermediate wavelengths. For instance, whenρ0 < ρc, all three roots
are negative in both limits of long and short wavelengths. Using Viète relations for the product
of all three roots of Eq. (7.164) we could identify the wavenumbersk for which this product is
zero. At these specific wavenumber values, one of the eigenvalues is changing its sign, and we
eventually have finite wavelength instabilities. The Viète relations for the productλ4λ5λ6 is a
quadratic equation ink2 and it is relatively easy to determine the wavelengths at which instabilities
may occur.

The equationλ4λ5λ6 = 0 is equivalent to the following equation ink2:

k2 (a k4 + b k2 + c) = 0 (7.173)

The coefficientsa, b, c are given by:
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Figure 7.6: Density instabilities. In the limit of strong motorsonly onebranch of the dispersion relation become
unstable. Parameters: (a)D00 = 5.0, D02 = 1.0, D20 = −5.0, D11 = −6.0, D22 = −9.0, D0

11 = 1.0, D0
22 =

7.0, A12 = −14.0, A21 = 14.0, D1
22 = 4.0, D1

11 = 0.5, A10 = −14.0, d = 3; (b)D00 = 4.0, D02 = −0.3, D20 =
−6.0, D11 = −4.0, D22 = 5.0, D0

11 = 1.0, D0
22 = 7.0, A12 = −14.0, A21 = 6.0, D1

22 = 1.0, D1
11 = 0.5, A10 =

−14.0, d = 3. The numerical values for these parameters are consistent with their theoretical expressions that we
have presented in Section 7.3.4.
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

a = −1
d
(D0

11 +D1
11)

(
(d− 1)D02 D20 −D00

(
−2D1

22 + d(D0
22 + 2D1

22)
))

b = 2A12 A21D00

(
1− 1

d

)
− 2A10 A21 D02

(
1− 1

d

)
+D02 D11 D20

(
1− 1

d

)
− 2D00 D11 D

1
22

(
1− 1

d

)
−D00

(
D11 D

0
22 +D22 (D0

11 +D1
11)

)
c = D00 D11 D22

(7.174)

Again, in the case of strong motors,i.e. theactiveproductsA12A21 andA10A21 are larger than
a specific values, the discriminant∆ =

√
b2 − 4 a c is positive. It means that we havek2 real roots.

Low Density: ρ0 < ρc. In this casea > 0, b < 0, c > 0, which implies that{
k2

1 k
2
2 = c

a
> 0

k2
1 + k2

2 = − b
a
> 0

(7.175)

It means that both roots,k2
1, k

2
2, are positive,i.e., one branch of the dispersion relation is

becoming positive at somek1 > 0 value and then negative at another valuek2 > k1 > 0.

High Density: ρ0 > ρc. In this case we havea > 0, b < 0, c < 0, i.e:{
k2

1 k
2
2 = c

a
< 0

k2
1 + k2

2 = − b
a
> 0

(7.176)

It follows that in this case we haveonly onepositive root, sayk1, which means that it must be
the mechanical branch which is unstable at zero wavenumber, and is changing its sign at the
valuek1 of the wavenumber. We exemplify our discussion in Fig. 7.6, where we use some
specific numerical values for the coefficients, which are consistent with the full expressions
that we have shown in Section 7.3.4.

7.5 Discussion and Open Questions

We have presented a microscopic model for active gels, which are made of stiff filaments that are
cross linked by motor proteins. The first step, which is needed to understand how this system self-
organize, and how large scale patterns could emerge, is to investigate how instabilities are driven
by motors starting from a completely disordered system,i.e. a homogeneous and isotropic system.

We have considered in our analysis three competing types of dynamics. One is the ubiquitous
Brownian dynamics, which tends to disorganize the system, the second corresponds to the excluded
volume repulsion between the rods, and the last is the active dynamics that is imposed by the
activity of the motor proteins.

We implement the microscopic description at hand at the level of mean field approach. We
present this theory in the form of coupled differential equations for the moments of the one particle
probability distribution functionψ(r, û, t). The corresponding moments of interest are the particle
densityρ(r, t), the polarizationt(r, t), which describes the local average orientation, and the

nematic order parameterQ
(2)

(r, t), which describes the local ordering of the filaments.
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The linear stability analysis of this system gave both encouraging and consistent results. First
of all, when all the motors are switched off, the only possibility is the isotropic-nematic instability
as in liquid crystal systems. The critical densityρc for this transition scales with the inverse of the
excluded volume of hard rods, Eq. (7.126), which is in perfect agreement with the Onsager theory
for the entropic driven transitions in hard rod systems [73].

The main interesting result is the possibility of motor driven instabilities for particle densities
that are below the isotropic-nematic critical value. This is a self consistent result of the theory that
we present, because the instabilities and the phase diagram that we derive are valid in the limit
of low densities. For example, we stress that in defining the active currents (see Section 7.3.3),
we have approximated the 2-particle probability distribution by the product between two 1-particle
probability distributions, which is valid only in dilute systems. The dilute limit of our system turns
out to be very important in driving the instabilities. We can understand this by using the simple
argument that, for filaments to get aligned by the motors, a low rotational drag could help the
motors to do the job more efficiently. In contrast, in the opposite limit of high density, the system
may be kinetically arrested and no ordering is possible, no matter how strong the motors are. In our
theory, this argument is reflected by the negative signs of the active coefficientsA12 andA10 (see
Eq. (7.105) Section 7.3.4), since a different sign of these coefficients wipes out all the motor-driven
instabilities that we have presented in this chapter.

Another aspect of the instabilities, which we have described, is that we need motors with a
strength above a certain threshold in order to overcome the disorganizing effect of the diffusion.
This adds neatly as a self-consistent aspect. However, a close look at the linear stability analysis
shows that motors with relatively different strengths may drive different kinds of instabilities. To be
more exact, our theory suggest that relatively weak motors can drive only instabilities with constant
density, a kind of polarized nematic state, whereas stronger motors can drive density instabilities,
which may correspond to aster, bundle, or even preprophase band formation. This is an interesting
aspect, since we can suspect that in the case of higher plant cells a different regulation of motor
protein activity may lead to completely different forms of microtubule self-organization,e.g. the
transversal interphase array and the preprophase band at the onset of mitosis.

Appendix A: Technical Background

A.1 Moments of the Distribution Function

Let us consider elongated particles as being at the positionr, and having the orientation̂u at a
given moment of timet. We associate to these particles thedensity distribution functionψ(r, û, t),
which fulfills the normalization condition:∫

dr

∫
dûψ(r, û, t) = N (7.177)

whereN is the total number of particles in the system. For this function, we define itsn-rank
moment as

Q(n)(r, t) =

∫
dû û . . . û︸ ︷︷ ︸

n times

ψ(r, û, t) (7.178)

Thezero andfirst rank moments are the density distribution functionρ(r, t), and the polar-
izationt(r, t): {

Q(0) = ρ(r, t)
Q(1) = t(r, t)

(7.179)
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For a complete description of our system we need more than two moments. For example, a
system of antiparallel filaments gives zero polarizationt = 0, but the system is still orientationally
ordered. Then, as we have seen in the previous chapter, the second rank moment is needed:

Q(2)(r, t) =

∫
dû ûû ψ(r, û, t) (7.180)

The second momentQ(2)(r, t) is a second rank tensor and it is used to describe the degree of
ordering independent of the polarization. Sinceû is a unit vector, it follows that the trace of the
dyadic product̂uû is

Tr ûû =
∑
i=1,2,3

u2
i ≡ 1 (7.181)

From this and from the definition of the moments, Eq. (7.180), it follows that:

Tr Q(2) (r, t) = ρ(r, t) (7.182)

This property is independent on the specific orientational density distributionψ(r, û, t). Because
our aim is to define independent moments one can introduce thetracelesstensor:

Q
(2)

(r, t) =

∫
dûψ(r, û, t)

(
ûû− I

d

)
(7.183)

This is also known as the nematic order parameter. It is asymmetricandtracelesstensor, and it is
due to this property that it belongs to the class ofirreducibletensors.

A.2 Irreducible Tensors

Definition 1 An irreducible Cartesiantensor of rankn is anyn-rank tensora(n) that gives zero if
it is contractedto δij-Kronecker tensor (which is symmetric) and to Levi-Civitaεijk tensor (which
is anti-symmetric):

δµiµj a(n)
µ1,...,µi,...,µj ,...µn

= 0

εµµkµl a(n)
µ1,...,µk,...,µl,...µn

= 0 (7.184)

Notation 1 In our notation, any irreducible tensor has anover-barasa(n).

The relations Eq. (7.184) show that it is not possible to get a non-zero lower rank tensor if
contractions to Kronecker and Levi-Civita tensors are made.

An irreducible tensor of rankn has2n + 1 independent components, if it is associated to the
SO(3) symmetry group, andonly twoindependent components in the case of the symmetry group
SO(2).

We stress that an arbitrary rank two tensora is not irreducible unless it is symmetric and trace-
less. Any such tensor can be decomposed into a symmetric and antisymmetric part

aµ ν = asymµν + aasymµν

where

asymµν =
1

2
(aµ ν + aν µ)

aasymµν =
1

2
(aµ ν − aν µ)
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The trace of the symmetric partasymm can be subtracted and the result is an irreducible tensorā.

ā = asym − I
Tr a

d

One can guess and it can be shown (see [104]) that this operation can be generalized to any Carte-
sian tensor of any rank: if doing the corresponding symmetry operations one can extract the irre-
ducible part̄aµ,...ν from any givenaµ,...ν . According to this observation, the irreducible part of the
dyadic product between two vectorsa b is:

a b =
1

2
(a b + b a)− I

d
(a · b)

Notation 2 Consider an arbitrary unit vector̂u in either 2D or 3D case. We denote the irreducible
part of then-rank cartesian tensor̂u . . . û︸ ︷︷ ︸

n times

as

T
(n)

(û) = û . . . û︸ ︷︷ ︸
n times

(7.185)

Theorem 2 . For the irreducible tensorT
(l)

(û) we have
∇2

û T
(l)

(û) = −l(l + 1) T
(l)

(û) for SO(3); l = 0, 1, 2, . . .

∇2
û T

(m)
(û) = −m2 T

(m)
(û) for SO(2); m = 0, 1, 2, . . .

(7.186)

whereû denotes an arbitrary vector on the unit sphere.

Corollary 2 . In the case of SO(3) symmetry group, the irreducible Cartesian tensor of rank l,

T
(l)

(û), is orthogonal to any of the spherical harmonicsYl m(û):〈
T

(l)
(û)|Yl′m(û)

〉
= 0 for any l 6= l′ (7.187)

where theinner product〈.|.〉 between two functionsh1(û) andh2(û) is defined as

〈h1(û)|h2(û)〉 =

∫
dûh∗1(û)h2(û) (7.188)

Proof: Because∇2
û is Hermitian:〈
∇2

ûT
(l)

(û)|Yl′m(û)
〉

=
〈
T

(l)
(û)|∇2

ûYl′m(û)
〉

(7.189)

It follows from Theorem 2:

−l(l + 1)
〈
T

(l)
(û)|Yl′m(û)

〉
= −l′(l′ + 1)

〈
T

(l)
(û)|Yl′m(û)

〉
(7.190)

or even more:
(l(l + 1)− l′(l′ + 1))

〈
T

(l)
(û)|Yl′m(û)

〉
= 0 (7.191)

which proves the corollary.
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Corollary 3 In the case of SO(2) symmetry group, any irreducible Cartesian tensor of rank n,

T
(m)

(û), is orthogonal to any of the Fourier componentse±im
′ θ:〈

T
(m)

(û)|e±im′ θ
〉

= 0 for any m 6= m′ (7.192)

In the above relation, the unitary vectorû is û = (cos θ, sin θ), andθ is the 2D polar angle.

In the case of 3D, a complete proof for Theorem 2 is given in Ref. [104]. The interesting
property shown in Eq. (7.186) is that an irreducible Cartesian tensor can be regarded as an eigen-
vector of the total angular momentum operator−∇2

û and it gives the same set of eigenvalues as the
spherical harmonicsYl m(û):

∇2
û Yl m(û) = −l(l + 1)Yl m(û) (7.193)

A.3 Expansion into Irreducible Tensor Series

Let us consider the 3D case. We can expand the probability distribution function into a series of
spherical harmonics:

ψ (r, û, t) =
∞∑
l=0

l∑
m=−l

cl m(r, t)Yl m(û) (7.194)

The coefficientscl m are given by

cl m(r, t) =

∫
dûY ∗l m(û)ψ (r, û, t) (7.195)

We define now theirreducible momentsQ
(l)

(r) of this distribution

Q
(l)

(r, t) =

∫
dûψ(r, û, t) T

(l)
(û) (7.196)

Given the Corollary 2 we have the expansion for the irreducible tensors

T
(l)

(û) =
l∑

m=−l

t(l)
m Yl m(û) (7.197)

The tensort(l)
m is called thespherical component of the irreducible tensorT

(l)
(û). The represen-

tation space for the irreducible representation can be changed to the one that is generated by the
spherical components{t(l)

m }m=−l,...,l. The inner product over this space is defined as the full con-
tractions between tensors. In this case, the spherical harmonics in Eq. (7.197) can be regarded as
coefficients, which are given by

Yl m(û) = t∗(l)m ||T
(l)

(û) (7.198)

In the last equation we mean by|| the full tensorial contraction, and we denoted byt∗(l)m as the
complex conjugate of the spherical tensort

(l)
m . We introduce the expression Eq. (7.198) for the

spherical harmonics into Eq. (7.195), and we obtain:

cl m(r, t) =

∫
dû t(l)

m ||T
(l)

(û)ψ (r, û, t) (7.199)
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Now, given the definition Eq. (7.196) for theirreduciblemomentsQ
(l)

(r), then we have from the
last equation

cl m = t(l)
m ||Q

(l)
(r) (7.200)

If we reintroduce this expression into Eq. (7.194), we obtain

ψ (r, û, t) =
∞∑
l=0

l∑
m=−l

t(l)
m ||Q

(l)
(r, t)Yl m(û) (7.201)

Finally, from Eq. (7.197), the last equation can be rewritten in the form

ψ(r, û, t) =
∑
l≥0

T
(l)

(û)||Q(l)
(r, t) (7.202)

This expression represents the expansion of the probability distribution functionψ(r, û) into a

series of irreducible tensorsT
(l)

(û) = û . . . û︸ ︷︷ ︸
l times

. The coefficients of this series are the irreducible

momentsQ
(l)

(r, t), which are given by Eq. (7.196).



Bibliography

[1] Alberts B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter.Molecular biology of
the cell. Garland Science, New York, 4th edition, 2002.

[2] Mitchison T. and Kirschner M.Dynamic instability of microtubule growth.Nature,373:161-
164, 1984.

[3] Weisenberg R.C., W.J. Deery, and P.J. Dickinson.Tubulin-nucleotide interactions during
polymerization and depolymerization of microtubules. Biochemistry,15:4248-54, 1976.

[4] Desai A. and T. J. Mitchison.Microtubule polymerization dynamics. Annual Review Of
Cell And Developmental Biology,13:83-117, 1997.

[5] Arnal I., E. Karsenti, and A. A. Hyman.Structural transitions at microtubule ends correlate
with their dynamic properties in Xenopus egg extracts. Journal Of Cell Biology,149:767-
774, 2000.

[6] Tran P. T. and F. Chang.Microtubule force production and nuclear positioning in the fission
yeast cell. Cell Motility And The Cytoskeleton54:189-189, 2003.

[7] Tran P. T., L. Marsh, V. Doye, S. Inoue, and F. Chang.A mechanism for nuclear positioning
in fission yeast based on microtubule pushing (vol 153, pg 397, 2001). Journal Of Cell
Biology 153:891-891, 2001.

[8] Holy T. E., M. Dogterom, B. Yurke, and S. Leibler.Assembly and positioning of microtubule
asters in microfabricated chambers. Proceedings Of The National Academy Of Sciences Of
The United States Of America94:6228-6231, 1997.

[9] Peskin C. S., G. M. Odell, and G. F. Oster.Cellular motions and thermal fluctuations - the
brownian ratchet. Biophysical Journal,65:316-324, 1993.

[10] Chretien D., S. D. Fuller, and E. Karsenti.Structure of growing microtubule ends: Two
dimensional sheets close into tubes at variable rates. Journal Of Cell Biology,129:1311-
1328, 1995.

[11] Lauffenburger D. A. and A. F. Horwitz.Cell migration: A physically integrated molecular
process. Cell,84:359-369, 1996.

[12] Cramer L. P., T. J. Mitchison, and J. A. Theriot.Actin-dependent motile forces and cell
motility. Current Opinion In Cell Biology,6:82-86, 1994.

[13] Janmey P., Cunningham C., Oster G., and Stossel T.Cytoskeletal networks and osmotic
pressure in relation to cell structure and motility. Swelling Mechanics: From Clays to Living
Cells and Tissues.T. Karalis, editor. Springer-Verlag, Heidelberg, 1992.



144 BIBLIOGRAPHY

[14] Miyamoto H. and Hotani H. Polymerization of microtubules within liposomes produces
morphological change in their shape.Taniguchi International Symposium on Dynamics
of Microtubules. H. Hotani, editor. The Taniguchi Foundation, Taniguchi, Japan. 220-242.,
1998.

[15] Fygenson D. K., M. Elbaum, B. Shraiman, and A. Libchaber.Microtubules and vesicles
under controlled tension. Physical Review E,55:850-859, 1997.

[16] Hill T. L. Linear aggregation theory in cell biology.Springer-Verlag, New York Berlin
Heidelberg, 1987.

[17] Hill T. and Kirschner M. Bioenergetics and kinetics of microtubule and actin filament as-
sembly and dissasembly.International Review of Cytology,78:1-125, 1982.

[18] Kramers H.A. Brownian motion in a field of force and the diffusion model of chemical
reactions. Physica,7:284-304, 1940.

[19] Dogterom M. and B. Yurke.Measurement of the force-velocity relation for growing micro-
tubules. Science,278:856-860, 1997.

[20] Janson M. E. and Dogterom M.Scaling of microtubule force-velocity curves obtained at
different tubulin concentration. in press.

[21] Mogilner A. and Oster G.Cell motility driven by actin polymerization.Biophysical Journal,
71:3030-3045, 1996.

[22] Mogilner A. and G. Oster.The physics of lamellipodial protrusion. European Biophysics
Journal With Biophysics Letters,25:47-53, 1996.

[23] Mogilner A. and G. Oster.The polymerization ratchet model explains the force-velocity
relation for growing microtubules. European Biophysics Journal With Biophysics Letters,
28:235-242, 1999.

[24] Arfken B. George and Weber J. Hans.Mathematical Methods for Physicists. Academic
Press, fourth edition, 1995.

[25] Murray R. Spiegel.Laplace Transforms, Shaum’s Outline Series.McGraw-Hill Book Com-
pany, New York, 1965.

[26] Landau L.D. and Lifschitz E.M.Theory of Elasticity. Pergamon, New York, 1986.

[27] Inoue S. and E. D. Salmon.Force generation by microtubule assembly disassembly in mitosis
and related movements. Molecular Biology Of The Cell,6:1619-1640, 1995.

[28] Tran P. T., L. Marsh, V. Doye, S. Inoue, and F. Chang.A mechanism for nuclear positioning
in fission yeast based on microtubule pushing. Journal Of Cell Biology,153:397-411, 2001.

[29] Janson M.E.Force Generation by Growing Microtubules. Ph.D. Thesis, Amolf, Amsterdam,
The Netherlands, 2002.

[30] Kolomeisky A. B. and M. E. Fisher.Force-velocity relation for growing microtubules. Bio-
physical Journal,80:149-154, 2001.



BIBLIOGRAPHY 145

[31] Muller-Reichert T., D. Chretien, F. Severin, and A. A. Hyman.Structural changes at micro-
tubule ends accompanying GTP hydrolysis: Information from a slowly hydrolyzable ana-
logue of GTP, guanylyl (alpha,beta)methylenediphosphonate. Proceedings Of The National
Academy Of Sciences Of The United States Of America,95:3661-3666, 1998.

[32] van Doorn G. S., C. Tanase, B. M. Mulder, and M. Dogterom.On the stall force for growing
microtubules. European Biophysics Journal With Biophysics Letters,29:2-6, 2000.

[33] Janson M. E., M. E. de Dood, and M. Dogterom.Dynamic instability of microtubules is
regulated by force. Journal Of Cell Biology,161:1029-1034, 2003.

[34] Walker R. A., E. T. Obrien, N. K. Pryer, M. F. Soboeiro, W. A. Voter, H. P. Erickson,
and E. D. Salmon.Dynamic instability of individual microtubules analyzed by video light-
microscopy - rate constants and transition frequencies. Journal Of Cell Biology,107:1437-
1448, 1988.

[35] Drechsel D. N., A. A. Hyman, M. H. Cobb, and M. W. Kirschner.Modulation of the dynamic
instability of tubulin assembly by the microtubule-associated protein tau. Molecular Biology
Of The Cell,3:1141-1154, 1992.

[36] VanBuren V., D. J. Odde, and L. Cassimeris.Estimates of lateral and longitudinal bond
energies within the microtubule lattice. Proceedings Of The National Academy Of Sciences
Of The United States Of America,99:6035-6040, 2002.

[37] Walker R. A., N. K. Pryer, and E. D. Salmon.Dilution of individual microtubules observed
in real-time invitro - evidence that cap size is small and independent of elongation rate.
Journal Of Cell Biology,114:73-81, 1991.

[38] Walker R. A., S. Inoue, and E. D. Salmon.Asymmetric behavior of severed microtubule
ends after ultraviolet microbeam irradiation of individual microtubules invitro. Journal Of
Cell Biology,108:931-937, 1989.

[39] Cyr R. J. and B. A. Palevitz.Organization of cortical microtubules in plant-cells. Current
Opinion In Cell Biology,7:65-71, 1995.

[40] Wasteneys G. O.Microtubule organization in the green kingdom: chaos or self-order?
Journal Of Cell Science,115:1345-1354, 2002.

[41] Sonobe S.Cell model systems in plant cytoskeleton studies. International Review Of Cytol-
ogy - A Survey Of Cell Biology, Vol 175,175:1-27, 1997.

[42] Mineyuki Y. The preprophase band of microtubules: Its function as a cytokinetic apparatus
in higher plants. International Review Of Cytology - A Survey Of Cell Biology, Vol 187,
187:1-49, 1999.

[43] Vos J. W., M. Dogterom, and A. M. C. Emons.Microtubules become more dynamic but not
shorter during preprophase band formation: a possible ”search-and-capture” mechanism
for microtubule translocation. Cell Motility and the Cytoskeleton,57:246-258, 2004.

[44] Marc J., C. L. Granger, J. Brincat, D. D. Fisher, T. H. Kao, A. G. McCubbin, and R. J. Cyr.
A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living
epidermal cells. Plant Cell,10:1927-1939, 1998.



146 BIBLIOGRAPHY

[45] McCurdy D. W. and B. E. S. Gunning.Reorganization of cortical actin microfilaments and
microtubules at preprophase and mitosis in wheat root-tip cells - a double label immunoflu-
orescence study. Cell Motility And The Cytoskeleton,15:76-87, 1990.

[46] Granger C. L. and R. J. Cyr.Microtubule reorganization in tobacco BY-2 cells stably ex-
pressing GFP-MBD. Planta,210:502-509, 2000.

[47] Granger C. L. and R. J. Cyr.Use of abnormal preprophase bands to decipher division plane
determination. Journal Of Cell Science,114:599-607, 2001.

[48] Mineyuki Y., J. Marc, and B. A. Palevitz.Relationship between the preprophase band, nu-
cleus and spindle in dividing allium cotyledon cells. Journal Of Plant Physiology,138:640-
649, 1991.

[49] Gimenez-Abian M. I., L. Utrilla, J. L. Canovas, G. Gimenez-Martin, M. H. Navarrete, and
C. De la Torre.The positional control of mitosis and cytokinesis in higher-plant cells. Planta,
204:37-43, 1998.

[50] Molchan T. M., A. H. Valster, and P. K. Hepler.Actomyosin promotes cell plate alignment
and late lateral expansion in Tradescantia stamen hair cells. Planta,214:683-693, 2002.

[51] Sugimoto K., R. E. Williamson, and G. O. Wasteneys.Wall architecture in the cellulose-
deficient rsw1 mutant of Arabidopsis thaliana: microfibrils but not microtubules lose their
transverse alignment before microfibrils become unrecognizable in the mitotic and elonga-
tion zones of roots. Protoplasma,215:172-183, 2001.

[52] Sugimoto K., R. E. Williamson, and G. O. Wasteneys.New techniques enable compar-
ative analysis of microtubule orientation, wall texture, and growth rate in intact roots of
Arabidopsis. Plant Physiology,124:1493-1506, 2000.

[53] Emons A. M. C. and B. M. Mulder.How the deposition of cellulose microfibrils builds cell
wall architecture. Trends In Plant Science,5:35-40, 2000.

[54] Mulder B. M. and A. M. C. Emons.A dynamical model for plant cell wall architecture
formation. Journal Of Mathematical Biology,42:261-289, 2001.

[55] Emons A. M. C. and B. M. Mulder.The making of the architecture of the plant cell wall:
How cells exploit geometry. Proceedings Of The National Academy Of Sciences Of The
United States Of America,95:7215-7219, 1998.

[56] Emons A. M. C., J. H. N. Schel, and B. M. Mulder.The geometrical model for microfibril
deposition and the influence of the cell wall matrix. Plant Biology,4:22-26, 2002.

[57] Fischer K. and P. Schopfer.Physical strain-mediated microtubule reorientation in the epi-
dermis of gravitropically or phototropically stimulated maize coleoptiles. Plant Journal,
15:119-123, 1998.

[58] Fischer K. and P. Schopfer.Interaction of auxin, light, and mechanical stress in orienting mi-
crotubules in relation to tropic curvature in the epidermis of maize coleoptiles. Protoplasma,
196:108-116, 1997.

[59] Hush J. M. and L. Overall.Cortical microtubule reorientation in higher plants: Dynamics
and regulation. Journal Of Microscopy-Oxford,181:129-139, 1996.



BIBLIOGRAPHY 147

[60] Zandomeni K. and P. Schopfer.Mechanosensory microtubule reorientation in the epidermis
of maize coleoptiles subjected to bending stress. Protoplasma,182:96-101, 1994.

[61] Zandomeni K. and P. Schopfer.Reorientation of microtubules at the outer epidermal wall
of maize coleoptiles by phytochrome, blue-light photoreceptor, and auxin. Protoplasma,
173:103-112, 1993.

[62] Yuan M., P. J. Shaw, R. M. Warn, and C. W. Lloyd.Dynamic reorientation of cortical
microtubules, from transverse to longitudinal, in living plant-cells. Proceedings Of The
National Academy Of Sciences Of The United States Of America,91:6050-6053, 1994.

[63] Panteris E., P. Apostolakos, and B. Galatis.The effect of taxol on triticum preprophase root-
cells - preprophase microtubule band organization seems to depend on new microtubule
assembly. Protoplasma,186:72-78, 1995.

[64] Dhonukshe P. and T. W. J. Gadella.Alteration of microtubule dynamic instability during
preprophase band formation revealed by yellow fluorescent protein-CLIP170 microtubule
plus-end labeling. Plant Cell,15:597-611, 2003.

[65] Whittington A. T., O. Vugrek, K. J. Wei, N. G. Hasenbein, K. Sugimoto, M. C. Rashbrooke,
and G. O. Wasteneys.MOR1 is essential for organizing cortical microtubules in plants.
Nature,411:610-613, 2001.

[66] Stoppin V., A. M. Lambert, and M. Vantard.Plant microtubule-associated proteins (MAPs)
affect microtubule nucleation and growth at plant nuclei and mammalian centrosomes. Eu-
ropean Journal Of Cell Biology,69:11-23, 1996.

[67] Jiang C. J. and S. Sonobe.Identification and preliminary characterization of a 65-kda
higher-plant microtubule-associated protein. Journal Of Cell Science,105:891-901, 1993.

[68] Chan J., C. G. Jensen, L. C. W. Jensen, M. Bush, and C. W. Lloyd.The 65-kDa carrot
microtubule-associated protein forms regularly arranged filamentous cross-bridges between
microtubules. Proceedings Of The National Academy Of Sciences Of The United States Of
America,96:14931-14936, 1999.

[69] Rutten T., J. Chan, and C. W. Lloyd.A 60-kDa plant microtubule-associated protein pro-
motes the growth and stabilization of neurotubules in vitro. Proceedings Of The National
Academy Of Sciences Of The United States Of America,94:4469-4474, 1997.

[70] Chan J., G. M. Calder, J. H. Doonan, and C. W. Lloyd.EB1 reveals mobile microtubule
nucleation sites in Arabidopsis. Nature Cell Biology,5:967-971, 2003.

[71] Eleftheriou E. P. and B. A. Palevitz.The effect of cytochalasin-d on preprophase band
organization in root-tip cells of allium. Journal Of Cell Science,103:989-998, 1992.

[72] Hitt A. L., A. R. Cross, and R. C. Williams.Microtubule solutions display nematic liquid-
crystalline structure. Journal Of Biological Chemistry,265:1639-1647, 1990.

[73] Onsager L.The effects of shape on the interaction of colloidal particles. Ann. N.Y. Acad.
Sci.,51:627, 1949.

[74] Lagomarsino M. C., M. Dogterom, and M. Dijkstra.Isotropic-nematic transition of long,
thin, hard spherocylinders confined in a quasi-two-dimensional planar geometry. Journal
Of Chemical Physics,119:3535-3540, 2003.



148 BIBLIOGRAPHY

[75] Chaikin P. M. and T. C. Lubensky.Principles of condensed matter physics. Cambridge,
1995.

[76] Shaw S. L., R. Kamyar, and D. W. Ehrhardt.Sustained microtubule treadmilling in Ara-
bidopsis cortical arrays. Science,300:1715-1718, 2003.

[77] Marco Cosentino Lagomarsino.Biologically inspired problems concerning semiflexible fil-
aments. PhD thesis, AMOLF, Amsterdam, 2004.

[78] Lloyd C. W. and R. W. Seagull.A new spring for plant cell biology: microtubules as dynamic
helices. Trend in Biochemical Sciences,10:476-478, 1985.

[79] Lloyd C. W. Helical microtubular arrays in onion root hairs. Nature,305:311-313, 1983.

[80] Lloyd C. W. Toward a dynamic helical model for the influence of microtubules on wall
patterns in plants. International Review of Cytology,86, 1984.

[81] Lloyd C. and J. Chan.Helical microtubules arrays and spiral growth. The Plant Cell,
14:2319-2324, 2002.

[82] Lloyd C. and P. Hussey.Microtubule-associated proteins in plants - Why we need a map.
Nature Reviews Molecular Cell Biology,2:40-47, 2001.

[83] Nedelec F., T. Surrey, and E. Karsenti.Self-organisation and forces in the microtubule
cytoskeleton. Current Opinion In Cell Biology,15:118-124, 2003.

[84] Nedelec F. J., T. Surrey, A. C. Maggs, and S. Leibler.Self-organization of microtubules and
motors. Nature,389:305-308, 1997.

[85] Takiguchi K. Heavy-meromyosin induces sliding movements between antiparallel actin-
filaments. Journal Of Biochemistry,109:520-527, 1991.

[86] Urrutia R., M. A. McNiven, J. P. Albanesi, D. B. Murphy, and B. Kachar.Purified kinesin
promotes vesicle motility and induces active sliding between microtubules invitro. Proceed-
ings Of The National Academy Of Sciences Of The United States Of America,88:6701-
6705, 1991.

[87] Surrey T., F. Nedelec, S. Leibler, and E. Karsenti.Physical properties determining self-
organization of motors and microtubules. Science,292:1167-1171, 2001.

[88] Surrey T., M. B. Elowitz, P. E. Wolf, F. Yang, F. Nedelec, K. Shokat, and S. Leibler.
Chromophore-assisted light inactivation and self-organization of microtubules and motors.
Proceedings Of The National Academy Of Sciences Of The United States Of America,
95:4293-4298, 1998.

[89] Nedelec F. Computer simulations reveal motor properties generating stable antiparallel
microtubule interactions. Journal Of Cell Biology,158:1005-1015, 2002.

[90] Nakazawa H. and K. Sekimoto.Polarity sorting in a bundle of actin filaments by two-headed
myosins. Journal Of The Physical Society Of Japan,65:2404-2407, 1996.

[91] Kruse K., A. Zumdieck, and F. Julicher.Continuum theory of contractile fibres. Europhysics
Letters,64:716-722, 2003.



BIBLIOGRAPHY 149

[92] Kruse K., S. Camalet, and F. Julicher.Self-propagating patterns in active filament bundles.
Physical Review Letters,87:138101, 2001.

[93] Kruse K. and F. Julicher.Actively contracting bundles of polar filaments. Physical Review
Letters,85:1778-1781, 2000.

[94] Lee H. Y. and M. Kardar.Macroscopic equations for pattern formation in mixtures of mi-
crotubules and molecular motors. Physical Review E,64:056113, 2001.

[95] Bassetti B., M. C. Lagomarsino, and P. Jona.A model for the self-organization of micro-
tubules driven by molecular motors. European Physical Journal B,15:483-492, 2000.

[96] Kim J., Y. Park, B. Kahng, and H. Y. Lee.Self-organized patterns in mixtures of microtubules
and motor proteins. Journal Of The Korean Physical Society,42:162-166, 2003.

[97] Kruse K., J. F. Joanny, F. Julicher, J. Prost, and K. Sekimoto.Asters, vortices, and rotating
spirals in active gels of polar filaments. Physical Review Letters,92:, 2004.

[98] Cross M. C. and P. C. Hohenberg.Pattern-formation outside of equilibrium. Reviews Of
Modern Physics,65:851-1112, 1993.

[99] Doi M. and S.F. Edwards.The Theory of Polymer Dynamics. Oxford, 1986.

[100] Dhont J.K.G.An Introduction to Dynamics of Colloids. Elsevier, 1996.

[101] Liverpool T. B. and M. C. Marchetti.Instabilities of isotropic solutions of active polar
filaments. Physical Review Letters,90:, 2003.

[102] Howard J.Mechanics of Motor Proteins and the Cytoskeleton. Sinauer, 2000.

[103] Kruse K. and F. Julicher.Self-organization and mechanical properties of active filament
bundles. Physical Review E,67:051913, 2003.

[104] Hess S. and W. K̈oler. Formeln Zur Tensor-Rechnung. Palm & Enke Erlangen, 1980.

[105] Gradshteyn I.S. and I.M. Ryzhik.Tables of Integrals Series, and Products. Academic Press,
Inc., fifth edition, 1994.

[106] Kruse K. and K. Sekimoto.Growth of fingerlike protrusions driven by molecular motors.
Physical Review E,66:, 2002.

[107] Kruse K. A dynamic model for determining the middle of Escherichia coli. Biophysical
Journal,82:618-627, 2002.

[108] Nedelec F., T. Surrey, and A. C. Maggs.Dynamic concentration of motors in microtubule
arrays. Physical Review Letters,86:3192-3195, 2001.

[109] Lloyd C. and J. Chan.Helical microtubule arrays and spiral growth. Plant Cell,14:2319-
2324, 2002.

[110] Azimzadeh J., J. Traas, and M. Pastuglia.Molecular aspects of microtubule dynamics in
plants. Current Opinion In Plant Biology,4:513-519, 2001.

[111] Wasteneys G. O.The cytoskeleton and growth polarity. Current Opinion In Plant Biology,
3:503-511, 2000.



150 BIBLIOGRAPHY

[112] Papaseit C., N. Pochon, and J. Tabony.Microtubule self-organization is gravity-dependent.
Proceedings Of The National Academy Of Sciences Of The United States Of America,
97:8364-8368, 2000.

[113] Lloyd C. How I learned to love carrots: the role of the cytoskeleton in shaping plant cells.
Bioessays,21:1061-1068, 1999.

[114] Genre A. and P. Bonfante.Cytoskeleton-related proteins in tobacco mycorrhizal cells:
gamma-tubulin and clathrin localisation. European Journal Of Histochemistry,43:105-111,
1999.

[115] Genre A. and P. Bonfante.A mycorrhizal fungus changes microtubule orientation in tobacco
root cells. Protoplasma,199:30-38, 1997.

[116] Tabony J.Morphological bifurcations involving reaction-diffusion processes during micro-
tubule formation. Science,264:245-248, 1994.

[117] Tabony J. and D. Job.Gravitational symmetry-breaking in microtubular dissipative struc-
tures. Proceedings Of The National Academy Of Sciences Of The United States Of America,
89:6948-6952, 1992.

[118] Asada T., S. Sonobe, and H. Shibaoka.Microtubule translocation in the cytokinetic appa-
ratus of cultured tobacco cells. Nature,350:238-241, 1991.

[119] Hasezawa S., J. Marc, and B. A. Palevitz.Microtubule reorganization during the cell-cycle
in synchronized by-2 tobacco suspensions. Cell Motility And The Cytoskeleton,18:94-106,
1991.

[120] Mineyuki Y. and B. A. Palevitz. Relationship between preprophase band organiza-
tion, f-actin and the division site in allium - fluorescence and morphometric studies on
cytochalasin-treated cells. Journal Of Cell Science,97:283-295, 1990.

[121] Dhonukshe P., A. M. Laxalt, J. Goedhart, T. W. J. Gadella, and T. Munnik.Phospholipase
D activation correlates with microtubule reorganization in living plant cells. Plant Cell,
15:2666-2679, 2003.

[122] Liu B., J. Marc, H. C. Joshi, and B. A. Palevitz.A gamma-tubulin-related protein associated
with the microtubule arrays of higher-plants in a cell cycle-dependent manner. Journal Of
Cell Science,104:1217-1228, 1993.



Summary

Biological systems are complex heterogeneous and far from equilibrium systems. The fundamental
questions posed by thephysicsof such systems are what the force generation mechanisms are, and
how energy is processed and distributed among the components inside them. In answering these
questions we can understand how motion is generated and how the system is organized, which
means a significant step toward grasping these systems in their full complexity. A systematic
program means first the identification of the components, and studying its properties and interplay
with other components. How these components integrates into a higher level of organization,
comes as a secondary step.

The cytoskeleton is a key ingredient of the living cell. The cytoskeleton is a complex of biopoly-
mers which self-assembles and organize inside the living cells. There are many important functions
that cytoskeleton fulfills. One is to give shape and rigidity to the cell, another is that cytoskeletal
biopolymers serves as tracks for material transport across the cell. The examples could continue
with the locomotion of cell, which is possible only due to the rearrangement of the cytoskeleton.

This thesis is concerned with the physical aspects of microtubules, which represent a part of
the cytoskeleton. Microtubules are tubular protein aggregates, which are particularly stiff. These
biopolymers were originally discovered as the scaffold of the mitotic spindle, which is the cell
division apparatus that separates the genetic material among the daughter cells. An important
property of microtubules is the alternation between growing and shrinking states, a behavior which
is termed asdynamic instabilityand make microtubules unique in the realm of polymers. It is
precisely this property that makes possible for microtubules to be involved in multi scale dynamics,
i.e. assembly-disassembly and organization.

In making the time scale separation, some particular aspects of microtubule assembly and or-
ganization are presented and analyzed in two different parts of this thesis. The attention is focused
on growing microtubules only,i.e. the dynamic instability does not play any role in the processes
that are considered.

In the first part of this thesis, it is investigated in detail the microtubule force production mech-
anism during self-assembly. In general, any polymer can generate force during polymerization. If
the seed of the polymer is fixed, then polymer can push against an arbitrary object, if the insertion
of subunits are allowed due to gap opening between the tip of the polymer and the corresponding
object. The required gap openings are possible due to the thermal fluctuations, and it is due to this
reason that the object that generates force by exploiting the thermal fluctuations is calledBrownian
ratchet. This particular type of motor does not contradicts the second law of thermodynamics,
which forbids work production in isothermal systems. The problem is avoided as the system is
out of equilibrium. In our example of the polymerization ratchet, the dynamics is driven by the
chemical polymerization energy, which is simply converted into work by the Brownian ratchet
mechanism itself. Microtubules that work as Brownian ratchets can be regarded as a particular
type of amolecular (nano-)motor.

In Chapter 3, the concept of Brownian ratchet is applied to microtubules. The main feature
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which is incorporated to this concept is the collective character of the microtubule growth, since
these polymers are composed of many filaments. One important question is to investigate what is
the maximum force that this particular type of molecular motor can generate. A second question is
to see how the velocity of growth depends on the opposing force that an external object can exert.
Does the velocity of growth depend on the relative arrangements of microtubule protofilaments
inside the assembly? In other words, given its internal structure is there a optimal way that the
microtubule can grow under load condition? The way that the investigation is carried out is that
the model details are extracted with the help of computer simulations, and compared directly with
experimental data.

In Chapter 4, different regimes of microtubule growth are considered. Quantitative comparisons
with available experimental data are successful in all cases, but a large number of free parameters
justifies the need for different experiments. However, some qualitative aspects, such as the micro-
tubule end structure can limit the number of possibilities, since end details were already observed
in experiments. More exactly, cryo-electron microscope images show that microtubuls develop
open sheets like structures at their end during growth. The disappearance of these structures is
correlated in experiments with a hypothetical switch mechanism that triggers dynamic instabili-
ties. Therefore, it appears natural to expect that a realistic growth model should reproduce such
end structures. The model suggests that there is a sensitive relationship between the size of these
structures and both the kinetic rates and the strength of the lateral bonds between protofilaments.
Although the comparison with experiments is not fully quantitative, the analysis suggests that it
is likely that the lateral bonding between the protofilaments is relatively week,i.e. a couple of
thermal energieskB T per subunit.

In the second part of the thesis, I discuss some physical aspects regarding the organization
of microtubules. In general, not referring only to microtubules, the importance of understand-
ing the cytoskeleton organization is manifold. From physical point of view, the questions that
are addressed in this thesis belong to the much broader context of pattern formation in far from
equilibrium systems. Here, the fundamental problem is to find the relationship between the macro-
scopic properties of organized dissipative systems and their microscopic details that drive the sys-
tem out of thermodynamic equilibrium. From the biological point of view, the investigation of
the cytoskeleton organization is tightly related to understanding the biological functional role that
different biopolymer arrangements assume in living cells.

In Chapter 5, the attention is focused on the microtubule organization in higher plant cells.
Particularly, the microtubule arrangements that appear in interphase cells or prior to their division
have received a lot of attention from biologists in the past, but still little is known about the driving
organization mechanism. In interphase plant cells, the microtubules organize on the cortex of the
cell in a parallel array, which is oriented transversely to the main axis of the cell. Just before
the onset of the division, this array narrows to a preprophase band which marks on the cortex
the location of the separation wall between the daughter cells. From physical point of view, in
this chapter is addressed the question if it is possible that passive factors could be responsible for
such organized arrays. One possibility in this respect is the nematic transition driven by excluded
volume interaction, which is a well known phenomenology from the physics of liquid crystals.
This implies a direct relationship between the degree of ordering and the density of microtubules.
A second possibility is that bending elasticity of microtubules is the driving factor for organizing
microtubules on the cortex. Since the bending elasticity is an intrinsic property of microtubules,
the organization in this case can be termed more exactly asself-organization.

Active factors are the best candidates in driving large scale patterns in filamentous systems. In
the past, the ability of motor proteins to organize filaments is demonstrated in both experiments
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and computer simulations. However, understanding the phase diagram remains an open theoret-
ical problem. Based on phase diagram analysis, a minimal set of conditions can be derived in
order to reproduce a particular phenomenology. In the last two chapters, two different approaches
are adopted. In Chapter 6, a mean field Landau type theory is developed. In this case, the phe-
nomenology of filamentous systems is described with no reference to microscopic details and the
basic constrains, which are imposed, are the symmetries that the physical system is supposed to
fulfill. This generic method reproduce the possibility of a transverse stripe that closely resembles
the preprophase band in plant cells. This encouraging result suggests that cytoskeletal array like
those observed in plant cells can be described by a mean field theory.

In Chapter 7, a microscopic model is introduced, and based on this I derive the macroscopic
evolution equations. The procedure is meant to meet the results that are derived in the generic
approach, which is presented in Chapter 6. Besides the active components, I introduced also the
passive interaction due to steric exclusion between filaments. The passive components alone are
responsible for isotropic-nematic instabilities at high density, which drive the system to a liquid
crystalline ordered phase. However, the active components can drive pattern formation in this
system at densities that are below the critical value that corresponds to passive driven instabilities.
The study in this chapter is limited at the level of linear stability analysis. However, the obtained
results suggest that the stable arrays might be homogeneous nematic polar patterns, vortices, and
asters. These features are consistent with the results obtained from other methods, like computer
simulations orin vitro experiments, which are present in the literature. A full understanding of the
emergent patterns requires the consideration of non-linear terms in evolution equations, which is
the objective of future projects.
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Samenvatting

Biologische systemen zijn complexe, heterogene systemen ver uit evenwicht. De fundamentele
vragen die de fysica van deze systemen oproept zijn: wat is de aard van de mechanismen die
krachten genereren en hoe wordt energie verwerkt en verdeelt binnen deze systemen. Door deze
vragen te beantwoorden kunnen we begrijpen hoe beweging opgewekt wordt en hoe deze systemen
zichzelf organiseren, en dus een grote stap maken in het doorgronden ervan in al hun complexiteit.
Een systematisch programma van onderzoek begint met het identificeren van de componenten, hun
eigenschappen en hun onderlinge interacties. Hoe deze componenten vervolgens integreren tot een
hoger organisatienivo is een tweede stap.

Het cytoskelet is een van de belangrijkste onderdelen van de levende cel. Het is een complex
van biopolymeren die zichzelf opbouwen en organiseren binnen de cel. Het cytoskelet vervult vele
belangrijke taken. Een ervan is om vorm en stevigheid aan de cel te verlenen. Een ander is om als
transportbanen te dienen voor het verplaatsen van stoffen binnen de cel. Ook cel-voortbeweging
kan genoemd worden, iets dat mogelijk wordt gemaakt door de dynamische reorganisatie van de
cytoskelet polymeren.

Dit proefschrift richt zich op de fysische eigenschappen van microtubuli, die een van de com-
ponenten van het cytoskelet vormen. Microtubuli zijn stijve buisvormige eiwit-aggregaten. Ze
zijn oorspronkelijk ontdekt als het raamwerk van de zogenaamde kernspoel, het mechaniek dat
het genetisch materiaal van de cell over de dochtercellen verdeelt bij de celdeling. Een belangrijke
eigenschap van microtubuli is hun voortdurend “schakelen” tussen een groeiende en een krimpende
toestand, een gedrag datdynamische instabiliteitwordt genoemd en hun uniek maakt binnen het
rijk der polymeren. Het is precies deze eigenschap die het mogelijk maakt dat microtubuli een
rol spelen bij dynamica op verschillende tijd- en lengte schalen met name opbouw, afbraak en
ruimtelijk organisatie.

Door een scheiding te maken tussen verschillende tijdschalen, kunnen de verschillende aspecten
van de groei aan de ene kant en de ruimtelijke organisatie aan de andere kant in aparte delen van het
proefschrift behandeld worden. We richten ons daarbij speciaal op groeiende microtubuli, m.a.w.
we laten de dynamische instabiliteit buiten beschouwing in de processen die wij beschouwen.

In het eerste deel van het proefschrift onderzoeken wij in detail het mechanisme van kracht-
enproductie tijdens de groei van microtubuli. In principe kan ieder polymeer krachten opwekken
tijdens polymerisatie. Als een uiteinde van het polymeer vast zit dan kan het andere uiteinde voort-
durend tegen een ander microscopisch object aanduwen mits er zo nu en dan genoeg ruimte tussen
polymeer-tip en object is dat nieuwe eenheden aan het polymeer gehecht kunnen worden. Deze
openingen kunnen onstaan doordat zowel het polymeer als het object onderhevig zijn aan thermis-
che fluctuaties. Een mechanisme dat op deze wijze krachten produceert met behulp van thermische
fluctuaties wordt wel een “Browns palrad” genoemd (Engels: Brownian ratchet). Een dergelijke
“motor” lijkt de tweede hoofdwet van de thermodynamica te schenden die verbied dat uit aan
systeem bij een vaste temperatuur werk wordt onttrokken. Dit is hier echter geen beperking daar
deze systemen buiten evenwicht zijn. In het voorbeeld van de polymerisatie “ratchet” wordt de
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dynamica gevoed door de chemische energie die vrijkomt bij de polymerisatie en omgezet wordt
in arbeid. Microtubuli die langs deze weg arbeid leveren kunnen gezien worden alsmoleculaire
(nano-)motoren.

In Hoofdstuk 3 wordt het idee van het Brownse palrad toegepast op microtubuli. Het belangrijk-
ste nieuwe ingredient dat toegevoegd wordt aan dit concept, is het collectieve karakter van de groei
van microtubuli, aangezien deze polymeren bestaan uit meerder filamenten. Een belangrijke vraag
is wat de maximale kracht is die deze motor kan leveren. Een tweede algemenere vraag is hoe
de groeisnelheid afhangt van de tegenkracht uitgeoefend door een ander object. Hangt de groeis-
nelheid af van de ondetlinge configuratie van de protofilamenten van de microtubule? Met andere
woorden, gegeven zijn structuur, is er een optimale manier voor een microtubule om tegen een
kracht in te groeien. Wij onderzoeken dit voornamelijk door met behulp van computersimulaties
modellen voor microtubule groei door te rekenen en te vergelijken met experimentele gegevens.

In Hoofdstuk 4 worden verschillende parameter-regimes voor microtubule groei beschouwd.
De kwantitatieve vergelijking met de experimentele gegevens blijkt in haast alle gevallen suc-
cesvol, al is door het grote aantal van vrije parameters de noodzaak voor meer experimenten evi-
dent. Toch kunnen ook nu al kwalitatieve aspecten, zoals de structuur van het microtubule uiteinde,
het aantal mogelijke modellen inperken. Zo laten cryo-elektronen microscopie beelden zien dat
groeiende microtubuli een open plaatvormig uiteinde ontwikkelen. Het verdwijnen van deze eind-
structuur wordt experimenteel in verband gebracht met het hypothetische schakel mechanisme dat
de dynamische instabiliteit veroorzaakt. Het is dus redelijk aan te nemen dat een realistisch model
voor groei dergelijke structuren reproduceert. Ons model laat zien dat er een gevoelige afhanke-
lijkheid bestaat tussen de kinetische constanten en de laterale bindingenergie tussen de protofil-
amenten en de omvang van de eind-structuren. Alhoewel de vergelijking met de experimentele
waarden niet volledig kwantitatief is, suggereert onze analyse wel dat de laterale binding tussen de
protofilamenten relatief zwak is en slechts in de orde van enige kT per subeenheid.

In het tweede deel van het proefschrift behandel ik enige fysische aspecten van de ruimtelijke
organisatie van microtubuli. Het belang van het begrip van de organisatie van het cytoskelet in het
algemeen, en dus niet alleen van de microtubuli, is groot. Vanuit natuurkundig oogpunt, horen de
vragen die in dit proefschrift aan de orde komen tot het veel bredere veld van patroonvorming in
niet-evenwichts systemen. Het fundamentele vraagstuk hier is de relatie tussen de macroscopische
eigenschappen van dissipatieve systemen en hun microscopische bouwstenen. Vanuit biologisch
perspectief is het onderzoek naar de structuur van het cytoskelet nauw verweven met de functionele
rol die biopolymere structuren spelen in de levende cel.

In hoofdstuk 5 richten wij onze aandacht op de organisatie van microtubuli in hogere planten
cellen. Speciaal de microtubule structuren die gevonden worden in de interfase en vlak voor de
celdeling hebben veel aandacht van de biologen gekregen, maar er is nog maar weinig bekend
van de optredende organiserende mechanismes. In interfase cellen vormen de microtubuli de zo-
genaamde corticale microtubuli die dwars georienteerd is op de lange as van de cel. Net voor
de deling vernauwd deze corticale microtubuli zich tot de preprofaseband die aangeeft waar de
scheidingswand tussen de dochtercellen komt te liggen. Wij beschouwen vanuit natuurkundig
perspectief welkepassievefactoren een rol zouden kunnen spelen voor de waargenomen geor-
ganiseerde structuren. Een mogelijkheid dat uitgesloten volume interacties tussen de microtubuli
aanleiding geven tot de vorming van een nematisch geordende structuur, welbekend uit de fysica
van vloeibare kristallen. Dit mechanisme impliceert dat er een directe relatie moet bestaan tussen
de dichtheid van de microtubuli en de graad van hun ordening. Een tweede mogelijkheid is dat de
buigingsenergie van de microtubuli een drijvende factor is in de organisatie van de microtubuli op
de cel cortex. Aangezien buigingselasticiteit een intrinsieke eigenschap is van microtubuli kunnen
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we hier vanzelf-organisatiespreken.
Actievefactoren zijn echter de beste kandidaten om grootschalige patroonvorming in filamenteuze

systemen te bewerkstelligen. In het verleden werd reeds vastgesteld, zowel in experimenten als
door middel van computer simulaties, dat motor eiwitten in staat zijn systemen van staafvormige
deeltjes ruimtelijk te organiseren. Het volledige fasediagram van dergelijke systemen blijft echter
nog steeds een open theoretische vraag. Op basis van een analyse van het fasediagram, is het mo-
gelijk een minimale set van condities af te leiden die tot een bepaalde fenomenologie leiden. In
de laatste twee hoofdstukken van het proefschrift worden twee verschillende aanpakken in deze
richting ontwikkeld.

In Hoofdstuk 6 wordt een Landau-achtige gemiddelde veld theorie opgezet. In deze benadering
wordt het gedrag van filamenteuze systemen beschreven zonder te referen aan de microscopische
details. De enige echte voorwaarden die aan het systeem gesteld worden zijn het voldoen aan de
gebruikelijke symmetrie eiegenschappen. Een van de resultaten van deze generieke benadering
is de beschrijving van een transversale streep-fase, die veel lijkt op de waargenomen preprofase-
band. Dit bemoedigende resultaat suggereert dat het inderdaad mogelijk is bestaande cytoskelet
structuren vi deze aanpak te beschrijven.

In Hoofdstuk 7 wordt een microscopische theorie geintroduceerd op basis waarvan vervol-
gens de macroscopische evolutievergelijkingen worden afgeleid. Deze procedure is bedoeld om
de generieke resultaten van Hoofdstuk 6 van onder-af her af te leiden. Afgezien van de actieve
componenten, introduceer ik ook op dit niveau de sterische wisselwerkingen tussen de filamenten.
Deze passieve interacties zijn verantwoordelijke voor de de isotroop-nematische instabiliteit die
optreedt bij hogere dichtheden en het systeem drijven naar een vloeibaar kristallijn georedende
fase. De actieve componenten echter zijn in staat het systeem al reeds bij veel lagere dichtheden
tot patroonvorming te dwingen. De studie in dit hoofdstuk beperkt zich tot een lineaire stabiliteits
analyse. De behaalde resultaten geven aan dat mogelijke stabiele patronen optreden in de vorm
van nematische oplijning, vortices en asters. Deze observaties zijn consistent met de resultaten van
eerdere benaderingen, zoals in vitro experimenten en computer simulaties. Een volledig inzicht in
de optredende patronen vergt een analyse van de niet-lineaire termen in de evolutie vergelijkingen,
hergeen het doel is van toekomstig onderzoek.



158 Samenvatting



List of Publications

G.S. v Doorn, C. Tanase, B.M. Mulder, M. Dogterom
On the stall force for growing microtubules
Eur Biophys J (2000), p 29.

Tanase C., M. Dogterom, B.M. Mulder
Modeling the force production mechanism in growing microtubules (I)
In preparation

Tanase C., M. Dogterom, B.M. Mulder
Modeling the force production mechanism in growing microtubules (II): the lateral affinity
between microtubule protofilaments
In preparation

Dogterom M, Janson ME, Faivre-Moskalenko C, Van der Horst A, Kerssemakers JWJ, Tanase
C, Mulder BM
Force generation by polymerizing microtubules
Appl Phys A, 75 (2): 331-336 AUG 2002.

Cosentino Lagomarsino M., C. Tanase, B.M. Mulder, M. Dogterom
Modeling the dynamic spring with microtubules in micro-fabricated chambers
In preparation

Tanase C., M. Cosentino Lagomarsino, M. Dogterom, B.M. Mulder
Large scale instabilities driven by active components in filamentous systems
In preparation

Zumdieck A., M. Cosentino Lagomarsino, C. Tanase, B.M. Mulder, M. Dogterom, K. Karsten,
F. Julicher
Mean field approach to preprophase band formation as motor-filament self-organization pro-
cess
In preparation





Acknowledgments

This work would not have been possible without the help and support of many people. Part of this
thesis is a result of a direct collaboration with a number of people to whom I wish to express my
thanks.

First of all I am greatful to Bela Mulder, who offered me staunch support in innumerable circum-
stances. Bela gave me the opportunity and resources in pursuing different subjects. He motivated,
and encouraged me many times during all these years. Potential flaws in some of the models that I
used to consider would not have been corrected without his critical eye.

Marileen Dogterom was among the first persons who introduced me to biological physics, a
very new and challenging field for me. With Marcel Janson I had many discussions about micro-
tubule experiments, which helped me in modeling. Together with Marco Cosentino Lagomarsino
I worked on the plant cell project, and I had the opportunity to exchange experience with a great
colleague.

I thank Jan Vos and Anne Mie Emons for helpful discussions, and for patiently answering to
my countless naive questions about the plant project.

Many thanks to Frank Julicher and Karsten Kruse for the opportunity of being introduced,
together with Marco, to a new theoretical procedure, which is used in understanding a particular
class of complex systems. Alexander Zumdieck worked together with us. I also want to thank
Alexander, Karsten, and Frank for the very good time during our stay in Dresden.

Bela, thanks a lot again for your help and effort in reading the manuscript carefully. My trust
in your proofreading gave me some comfort during writing. Marileen, Karsten, Frank, Jan, Anne
Mie, and Simon gave many useful suggestions after reading the manuscript, and helped me in
identifying and correcting some serious mistakes.

I am very pleased to remember my high school years, under the supervision of Viorel Mali-
novschi. He was the teacher who introduced me to the “untamed” world of theoretical physics.

Special thanks to my paranimfen, George and Adrian. To my parents, and to all people back
home, for the warmth they allways offer to me and Mirela during holidays. To Camelia, Nelu, Lili,
Radu, Violeta, and Cristian.

Dear Mirela, your support, trust, and patience are only examples to show how much I owe to
you. Thanks for being. Your smile always gives me strength and motivation.



The work described in this thesis was performed at the FOM-Institute for Atomic and Molecular
Physics, Kruislaan 407, 1098 SJ, Amsterdam, The Netherlands. The work is part of the research
program of the Stichting voor Fundamenteel Onderzoek der Materie (FOM) and was made possible
by financial support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).


